

Tools, resources, genotyping and phenotyping

Clare Lister and Simon Griffiths 6/10/2017

- 1. Dissecting UK drought tolerance in Paragon x Garcia
- 2. Quantifying agronomic impact of WGIN target genes using the Paragon NIL library
- 3. Informing multiple marker assisted selection for yield stability using Paragon library
- 4. A chromosome segment substitution library for Avalon x Cadenza
- 5. Understanding genotype x environment interaction in Avalon x Cadenza
- 6. Foundations for a new generation segregating populations for studying yield stability in the UK
- 7. Applying WGIN data to breeding by design for UK yield stability
- 8. Curation and distribution of WGIN germplasm

- 1. Dissecting UK drought tolerance in Paragon x Garcia
- 2. Quantifying agronomic impact of WGIN target genes using the Paragon NIL library
- 3. Informing multiple marker assisted selection for yield stability using Paragon library
- 4. A chromosome segment substitution library for Avalon x Cadenza
- 5. Understanding genotype x environment interaction in Avalon x Cadenza
- 6. Foundations for a new generation segregating populations for studying yield stability in the UK
- 7. Applying WGIN data to breeding by design for UK yield stability
- 8. Curation and distribution of WGIN germplasm

- 1. Dissecting UK drought tolerance in Paragon x Garcia
- 2. Quantifying agronomic impact of WGIN target genes using the Paragon NIL library
- 3. Informing multiple marker assisted selection for yield stability using Paragon library
- 4. A chromosome segment substitution library for Avalon x Cadenza
- 5. Understanding genotype x environment interaction in Avalon x Cadenza
- 6. Foundations for a new generation segregating populations for studying yield stability in the UK
- 7. Applying WGIN data to breeding by design for UK yield stability
- 8. Curation and distribution of WGIN germplasm

NILs in the genetic background of Paragon:

藏

Rht-D1, Rht-B1, Rht8, Ppd-B1, Ppd-D1, Lr19, 1BL.1RS, 8 eps QTL, Vrn1, Vrn3, 3N, grain shape QTL, QTL from the Watkins collection (BBSRC WISP), selected WGIN mutants.

- Drought Trial repeated 2016-2017 (and 2017-2018!)
- 177 PxG RILs, Paragon and Garcia
- Includes subset of Paragon Library (Ppd, Rht, Staygreen and 7DL introgression)
- Riverside Field (2016-17) and Football Field (2017-2018) Church Farm: fields with light, sandy soil and suitable slope.
- Soil water content and aerial monitoring
- Traits measured: Stage 31, booting, DTEM, height, yield, specific weight, TGWT*

• Other traits investigated: waxiness, awns, ear compactness, Department for Environment tillering Food & Bural Affairs

Stage 31

Department for Environment Food & Rural Affairs

CIMMYT

- At potential of -33 kPa (-10 kPa for sand) soil is at Field Capacity
- Field Capacity is viewed as optimal condition for plant growth and microbial
 - activity. suggested Field Capacity for this trial

戀

UAV imaging

11/05/2017

01/06/2017

30/06/2017

Garcia

Paragon

John Innes Centre

	2016				2017			
	Locus Linkage %Expl. High				Locus Linkage %Expl. High			High
	#	group	Var	allele	#	group	Var	allele
Booting NI	178	2B	9.993	Garcia	178	2B	9.284	Garcia
	203	2D	21.515	Paragon	203	2D	21.223	Paragon
	402	4D	6.416	Garcia				
					494	5B	10.996	Paragon
	687	7A	17.044	Paragon	687	7A	10.762	Paragon
Booting I	178	2B	9.464	Garcia	193	2B	6.202	Garcia
	203	2D	14.91	Paragon	204	2D	53.926	Paragon
	688	7A	19.699	Paragon	687	7A	14.873	Paragon
DTEM NI	178	2B	10.253	Garcia	178	2B		Garcia
	204	2D	22.262	Paragon	203	2D	21.318	Paragon
				-	494	5B		Paragon
	687	7A	17.142	Paragon				
DTEM I	178	2B		Garcia	193	2B	4.727	Garcia
					204	2D	38.401	Paragon
	688	7A	15.3	Paragon	690	7A		Paragon
Height NI	16	1A	1	Garcia	16	1A		Garcia
	286	3B	3.652	Garcia				
	401	4D	62.258	Paragon	401	4D	62.299	Paragon
Height I	16	1A		Garcia	16	1A		Garcia
	292	3B		Garcia	292	3B	3.914	Garcia
	401	4D	59.611	Paragon	401	4D	59.277	Paragon
					700	7A		Paragon
Yield NI					173	2B	17.717	
	743	7B	16.81	Garcia				
Yield I		NO QTL	s DETEC	CTED	18	1A	11.358	Garcia
					173	2B	16.986	Garcia
Specific Weight NI	177	2B	8.997	Garcia	145	2B	11.341	Garcia
	232	3A	6.054	Paragon				
	403	4D	29.213	Paragon	402	4D	33.676	Paragon
	450	5A	2.47	Garcia				
					781	7D	5.234	Garcia
Specific Weight I					20	1A		Garcia
					173	2B		Garcia
	401	4D	38.147	Paragon	401	4D		Paragon
	441	5A		Paragon				Ŭ
	455	5A		Garcia				

		Locus	Linkage	%Expl.	High value
-		no.	group	Var.	allele
Ear	NI	417	5A	16.776	Garcia
Compactness		480	5B	28.573	Paragon
	I	NO QTLs DETECTED			
Length awns	NI	585	6A	48.047	Garcia
	I	NO QTLs DETECTED			

John Innes Centre

Waxiness

Tillering

Stage 31 (1 rep only)

Locus	%Expl.	High value
name	Var.	allele
BS00090234_2B	12.140	Garcia
BS00054733_5A	12.258	Paragon

Department for Environment

Food & Rural Affairs

Wheat Genetic Improvement Network 2. Quantifying agronomic impact of WGIN target genes using the Paragon NIL library

John Innes Centre

Subset of Paragon Library

Paragon	
Lr19 Kamb1	7DL introgression*
Par Mutant 2316b	Staygreen
Ppd 1x Early	DTEM
Ppd 2x Early	DTEM
Ppd 3x Early	DTEM
Ppd KO 2x	DTEM
Rht 8 Mara	Height
Rht B1 Robigus	Height
Rht D1 Alchemy	Height

- Drought Trial
- Phenospex

Department for Environment Food & Rural Affairs

*from Agropyron elongatum

2. Paragon NIL library

- Yields higher in 2016 than 2017
- Little difference in yields between NI and I in 2016
- Large effect on yield between NI and I in 2017 for most lines

2. Paragon NIL library

- Subset PL lines drilled under Phenospex (2015-2016/2016-2017)
 - Two randomised blocks of 16
 - One treatment all plots + nitrogen (40 kg/h)
 - Two subsequent treatments +/- additional nitrogen (250 kg/h)

Had reasonable results last year but this years results difficult to interpret due to heavy sampling and drought conditions.

緣

2. Paragon NIL Library

- Collaboration with Ji Zhou's group (EI) ٠
- Phenospex measurements show time when growth rates of Paragon/Rht8 • diverge from RhtB1/RhtD1

Sample collection and RNA analysis Department for Environment Food & Rural Affairs

3. Informing multiple marker assisted selection for yield stability using the Paragon library

- Lines generated to test this:
- RhtB1 x Rht8
- RhtD1 x Rht8
- RhtB1 x RhtD1
- 1 m plots 2016-17

RhtB1+RhtD1 Rht8+RhtD1 Rht8+RhtB1 Paragon

- Lines generated to test this:
- RhtB1 x Rht8
- RhtD1 x Rht8
- RhtB1 x RhtD1

Autumn drilling of yield trial

RhtB1+RhtD1 Rht8+RhtD1 Rht8+RhtB1 Paragon

- In addition a 'winter Paragon' was produced by crossing in *VrnA1* + *VrnB1* from Malacca *see increased yield with winter Paragon* (Simon Orford)
- Subsequently crossed into *Rht8 / RhtB1 / RhtD1* to produce winter, semi-dwarf Paragon

Department • Three genes segregating... need to screen in glasshouse for Environment Food & Rural Affairs

- 1. Dissecting UK drought tolerance in Paragon x Garcia
- 2. Quantifying agronomic impact of WGIN target genes using the Paragon NIL library
- 3. Informing multiple marker assisted selection for yield stability using Paragon library
- 4. A chromosome segment substitution library for Avalon x Cadenza
- 5. Understanding genotype x environment interaction in Avalon x Cadenza
- 6. Foundations for a new generation segregating populations for studying yield stability in the UK
- 7. Applying WGIN data to breeding by design for UK yield stability
- 8. Curation and distribution of WGIN germplasm

藏

Department for Environment

4. A chromosome segment substitution library (CSSL) for Avalon x Cadenza

- The BC3 NILs carry selected genetic foreground in the QTL regions (height, heading, and yield)
- In addition each line carries ~12.5% random chromosomal lacksquarebackground.
- Plan to tile the whole genome with chromosome segments to make recombinant substitution lines for genome.

- Produced 'Graphical Genotypes' for all 21 chromosomes
- Selected lines to give the optimal tiling path for each chromosome
- Do not have complete coverage of genome
- F2 progeny of crosses to recurrent parent of selected lines to be genotyped with BS markers to determine the presence of required segment(s) [2018]
- 94 individuals, from 60 selected NILs =~6000 DNA extractions
- Individually chosen sets of ~ 25 KASP markers for each NIL
- Seed of these lines will be bulked and made available to the community

Wheat Genet 6. Foundations for a new generation segregating Improvement Network populations for studying yield stability in the UK

Female		Male	RL value Diversity target	RL value Diversity target	RL value Diversity target	DTEM HT LODGE GS31 YLD
Grafton	X	Conqueror	lodging	mildew	eyespot	у
Grafton	х	Revelation	heading	brown rust	fusarium	у
Beluga	Х	Cordialle	protein	hagberg	TGW	
Scout	Х	Denman	lodging			У
Revelation	х	Gallant	heading	fusarium		у
KWS Sterling	х	Alchemy	height			У
KWS Santiago	х	Scout	yield	eyespot		У
KWS Santiago	х	Solstice	yield			у
KWS Santiago	X	Gallant	hagberg	market share		
KWS Kielder	х	Scout	yield			у
KWS Kielder	х	Einstein	yield			у
KWS Gator	х	Gallant				
KWS Gator	х	Revelation	septoria tritici			
KWS Croft	х	Scout	lodging			у
lcon	x	Skyfall				
Horatio	Х	KWS Gator	GS31			у
Grafton	X	Solstice	height	eyespot		у
Gallant	х	Invicta	heading	market share		у
Gallant	х	KWS Kielder	market share			
Einstein	x	KWS Santiago	yield			У
Cougar	х	Claire	yield untr			у
Cordialle	X	Revelation	heading	brown rust		у
Cordialle	х	Crusoe	GS31	market share		у
Cordialle	х	Alchemy	height			у
Cordialle	х	Invicta	heading			у
Conqueror	х	Scout	lodging	eyespot		У
Claire	х	Revelation	yield untr			ý

Simon Orford

- All crosses at F2
- Department for Environment Food & Rural Affairs
- Populations in pink at F4 (-> F5/F6) aiming for ~400 lines each
- Populations in yellow at F3 (-> F5/F6) aiming for ~400 lines each

7. Applying WGIN data to breeding by design for UK yield stability

- 'Ideal' ACDH lines to be crossed were selected by analysis of the QTL data
- These would have three high yielding QTL (GY) alleles
- However most 'ideal' lines had unfavourable QTL alleles elsewhere
- Therefore made best selection possible...

Cross	Parent 1	Parent 2	
Cross 1	DH109	DH160	DH109 is high yielding parent. DH160 has complementary alleles at all selected loci for achieving target genotype
Cross 2	DH61	DH182	Neither parents carried all favourable GY alleles, but between the parents all favourable alleles were present.
Cross 3	DH27	DH61	Neither parents carried all favourable GY alleles, but between the parents all favourable alleles were present.

Cross	Parent 1	Parent 2	
Cross 1	DH109	DH160	F2 progeny only from 1 plant
Cross 2	DH61	DH182	F2 progeny from many plants
Cross 3	DH27	DH61	F2 progeny from many plants

• F2 lines need to be genotyped but lack resources to do this...

- 3N alien introgression (from *Aegilops uniaristata*) into CS
- Shows aluminium tolerance: Al toxicity primarily affects the division and elongation of the root apex
- 3N line shows prolific root phenotype
- Three different recombinant lines (Rec4-1, Rec 5-1 and Rec 6-3)
- Crossed to winter elite lines Cordiale, Napier and Robigus
- Difficult to get markers to follow introgressed region...
- ... few homozygous lines identified
- Autumn drilling of multiplication plots from Rec5-1 x Cordiale

- QTL on 4A for DTEM in AxC NILs
- Only identified when Axiom mapping data gave better coverage of chromosome 4A
- Possibly PhyB

- Lines homozygous for the QTL region in an Avalon or Cadenza background have been identified
- Autumn drilling of multiplication plots

Andrew Riche

WGIN management meeting Oct 2017

Department for Environment Food & Rural Affairs

Wheat Genetic Improvement Network

- Continued regular measurements anthesis, senescence, grain and straw yield
- Extra Wgin 3 work sampling at anthesis, measurement of mineral uptake during grainfill (8+ elements)
- Continued regular monitoring by UAV (21 occasions, Nov July)

Used by others as a resource:

- George Savill, PhD student, assessing grain protein distribution
- Dr Y Wan with Zhiqiang Shi (PhD student) low protein wheat quality (5 lines)
- Dr P Buchner with Anne Rossman (PhD student) investigating effect of applying late foliar N on 4 varieties

Anthesis occurred between 26th May and 12th June

21/6/17 31.3^oC 28/6/17 14.7^oC

Rothamsted WGIN N200 Grain yield 2004-2017

ROTHAMSTED RESEARCH

- Barrel (highest yielding Gp3) replaces Cocoon
- Zyatt (highest yielding Gp 1) replaces Gallant
- Seed ready, should be drilled next week

- 2017 images not yet processed – priority for the autumn
- Some preliminary trials of disease ID from LIAV images

Ambient light sensor

5m altitude with 25mm lens, 0.65mm/pixel With 45mm lens, 0.37mm/pixel

RTK GPS Base station

Influence of N nutrition on total N and S uptake and partitioning in 20 modern wheats

80

RESEARCH

Malcolm Hawkesford March Castle David Steele Nicolas Virlet Adam Michalski

Department for Environment Food & Rural Affairs Wheat Genetic Improvement Network Farm staff: Stephen Goward Chris Mackay Nick Chichester-Miles

WGIN3 Management Meeting 6th October 2017

Screening germplasm for resilience to aphids (WP2.3)

Gia Aradottir

Crosses of *T. monococcum* lines made by Mike Hammond-Kosack: MDR037 (susceptible) x MDR045, MDR049 and MDR657 (all showing evidence of partial resistance)

F1, F2 and F3 generations of these crosses have now been tested in the phenotyping screen against both aphid species. F3s of each cross tested included plants with the best and the worst effective partial resistance to the aphid species.

Department for Environment Food & Rural Affairs

S. avenae on T. monococcum F3 crosses of MDR37 x 49

- MDR037x657 - Solstice

Screening germplasm for resilience to aphids (WP2.3) Information to establish the likely genetic basis of resistance to cereal aphids

Wheat Genetic

Network

- F3 generation has been harvested
 - Need threshing and decisions made on further phenotyping
- Tissue samples collected and waiting to be tested

Rothamsted Research where knowledge grows

WGIN 3 Resistance to foliar diseases

Vanessa McMillan Kim Hammond-Kosack

Department for Environment Food & Rural Affairs

WGIN MM 6th October 2017

Watkins 2008 Field Trial

10 Watkins accessions with a high degree of resistance to all 4 foliar pathogens

			2	008 Disease as	sessments	•
Accesssion	Growth habit	Country of Origin	Yellow rust	Brown rust	Septoria	Mildew
18	Spring	India	0	0	Т	Т
137	Spring	Australia	Т	Т	0	Т
203	Winter	India	0	0	0	Т
231	Spring	Hungary	0	0	Т	0
262	Spring	Canary Islands	0	0	0	0
399	Spring	China	Т	0	Т	0
495	Spring	Morocco	0	0	Т	0
610	Spring	Yugoslavia	0	0	Т	Т
733	Spring	Iran	Т	Т	Т	Т
786	Spring	USSR	0	Т	Т	0

0 - no disease , T = trace

Watkins foliar disease field trials

1st and 3rd wheat replicated field trials

Three field seasons 2014-2015 2015-2016 2016-2017

26th June 2015 1st wheat Long Hoos 4

Evidence of resistance to yellow rust

- Did susceptible Watkins lines escape disease in 2008 or change in YR races?
- Hereward and Paragon good source of resistance to current YR races

ROTHAMSTED

СН

RESEARCH

Evidence of resistance to yellow rust

Did susceptible Watkins lines escape disease in 2008 or change in YR races? •

CH

Watkins 137

Highly susceptible 100 % flag leaf disease severity on 24th June 2015

Watkins 733

Highly resistant No yellow rust sporulation visible throughout whole field season

Watkins 203

Low levels of yellow rust sporulation 15 % flag leaf area infected with yellow rust on 24th June 2015

Paragon

Low levels of yellow rust sporulation 5 % flag leaf area infected with yellow rust on 24th June 2015 Large necrotic stripes

Brown rust on flag leaves

ROTHAMSTED

СН

RESEARCH

- Watkins 786
- Watkins 733 and 786 were most resistant to yellow rust but are very susceptible to brown rust do not possess multi disease resistance
- Difference in brown rust races between 2016 and 2017?

Septoria on lower leaves

Low levels of Septoria on all genotypes except 399 and Fielder where high levels of yellow rust are found, therefore impossible to assess Septoria infections

• All Watkins genotypes less susceptible to Septoria than Hereward and Paragon

Average disease scores across all field seasons

2014-2015	YR
only	
2015-2016	YR, BR
and S	
2016-2017	YR, BR
and S	

Septoria levels low across both field seasons

Very little powdery mildew across all three field seasons on wheats –

Watkins 203 and 610 most promising for showing high levels of resistance against multiple foliar diseases

• Watkins 610 may be escaping disease through later leaf emergence

ROTHAMSTED

RESEARCH

Evidence of resistance to yellow rust

• Did susceptible Watkins lines escape disease in 2008 or change in YR races?

Watkins mapping population development

Summer 2015Field crossing with cv. Fielder				
Accession Number	Growth habit	Country of Origin	Ears crossed	F_1 grains
203	Winter	India	8	31
231	Spring	Hungary	8	54
610	Spring	Yugoslavia	6	33
733	Spring	Iran	6	49
786	Spring	USSR	N/A	N/A

Summer 2016

- F_1 grain sown in glasshouse to generate F_2 and for backcrossing to cv. Fielder
- Watkins 786 x Fielder crossing carried out in glasshouse at later date
- F_1 grain included in a spring field trial 2016 to study inheritance

Watkins 786 originally excluded from crossing because had high levels of yellow rust during tillering – possibly APR?

- Six F₁ grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on 30th June 2016 flag leaf assessments

- Six F₁ grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on 30th June 2016 flag leaf assessments

- Six F₁ grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on 30th June 2016 flag leaf assessments

2017 F₂ field trial

F₂ field trial

- Two or four F₂ populations from each of the four crosses sown (FxW203, FxW231, FxW610 and FxW733) + parents
- 10 F₁ plants sown from FxW786 cross
- Plot size = 4 rows x 1 m length, 60-80 seeds sown for each population
- Drilled 14th October 2016 in Sawyers 2
- After emergence and again in the spring plots were thinned to 40 plants per plot with approx. 10 cm spacing between plants

- Six F₁ grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on 30th June 2016

Fx733 F₂ segregation – flag leaf phenotyping

% flag leaf infected with YR

% flag leaf infected with YR

BBSRC

- Six F₁ grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on 30th June 2016

Fx203 F₂ segregation – flag leaf assessments

24 R : 37 I : 19 S

1.2 R : 1.9 I : 1 S

Large number of intermediates

Semi-dominant resistance locus

Should give 1 I : 1 S ratio in testcross

- Six F₁ grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on 30th June 2016

Fx231 F₂ segregation – flag leaf assessments

16 R : 29 I : 35 S

1:2:2

Weakest parental resistance

Semi-dominant resistance in W231

Skewed towards fully susceptible phenotype

Suppressor locus from Fielder?

- Six F₁ grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on 30th June 2016

Fx610 F₂ segregation – flag leaf assessments

30 R : 14 I : 32 S

2:1:2

Semi-dominant resistance locus Lack of intermediate phenotypes Interaction effect with other loci?

610 physiological later maturing variety

Fx786 F₁ phenotype - flag leaf assessments

Resistance is dominant in Watkins 786

Next steps

Sow testcross trial in field (F₁ backcrossed to Fielder)

backcross	harvested
203	145
231	169
610	171
733	175

Sow F₂ FxW786 populations

Fx786 F_1 Plant	F ₂ harvested seed
1	579
2	610
3	605
4	251
5	No seed
6	335

Include F_1 plants and parental genotypes to benchmark the phenotype of known hets – confirm if we see variation in hets due to potential suppressor alleles

- Five Watkins accessions with evidence of moderate-high resistance against YR across three field seasons (and 2008 field trial)
- Watkins 203 and 610 most promising for multi-disease resistance (although 610 later maturing)
- Genetics of inheritance different in each Watkins accession (no single dominant locus 3R : 1S ratios)

2017-2018 field trials

Testcross trial MDR031 (R) x MDR043 (S) take-all phenotyping trial Watkins lines also included in Zymoseptoria field trial

Many thanks to

Kim Hammond-Kosack

Undergraduate summer students Erin Baggs Eleanor Leane Tessa Reid Laurie Neal Alex Chambers-Ostler Leanne Freeman Jamie Hawkesford Ellen Farnham

Gail Canning - seed preparation

Mike-Hammond-Kosack - crossing

Rodger White - statistics

RRes farm and glasshouse staff

Department for Environment Food & Rural Affairs

WGIN Wheat Promotome Capture

A sub-contractor project of WGIN 3

Michael Hammond-Kosack (WGIN PA)

Update for WGIN MM on October 6th @ RRes

What is Promotome Capture & what are the Main Objectives for WGIN ?

What Is It?

Exome Promotome Capture

"Exome Promotome capture is a method used to extract and sequence the exome promotome (collection of all exons-promoters) in a genome and compare this variation across a sample of individual organisms (wheat cultivars). This allows studies to quickly focus in on the small percent of the genome that is most likely to contain variation that strongly affects phenotypes of interest and/or to identify rates of codon promoter evolution between a set of species to infer the effects of mutation and selection among genes." (http://hawaiireedlab.com/gwiki/index.php?title=Exome_Capture)

Main Objectives

- Comparison of promoters of genes of interest in a large number of wheat cultivars used in breeding, farming & scientific research
- > Identification of cis-acting elements important for gene regulation
- Linking this comparison to phenotypic and transcriptomics data to increase our understanding of gene regulation to generate these phenotypes

Time Line

- FASTA with 1,402 promoter sequences submitted to MYcroarray May 10th
- MYbaits synthesis (@ Mycroarray) completed August 24th
- 96 DNA samples (80%, up to 8µg) posted September 11th
- Samples received by MYcroarray September 12th

3

4

Š

6

8

- MYbaits Capture: Library preps started September 14th
- Next Generation Sequencing @ MYcroarray: October
- Data will be received @ RRes from mid November 2017
- Bio-Informatics November 2017 February 2050 (WGIN extension 18)

WGIN Funding & Design - Traits, Trait-Coordinators & Wheat Cultivars

- Defra's WGIN 3 funding for this sub-contractor project allowed for the use of up to 40,000 MYbait probes and 96 "Reactions" (which equates to 96 Wheat Cultivars)
- > MYbaits set-up: 1700bp promoter uses 28 MYbaits (120bp) with 2 fold coverage :

- > 3 wheat homoeologues (A, B, D) 3 x 28 MYbait probes / gene
- > Thus Defra's funding will allow for the capture of **1428 promoter sequences**.
- > The WGIN Management Team decided on **10 Trait Categories**,

and thus ≤143 promoter sequences per trait

Traits & Trait-Coordinators

1. Yield Resilience – Cristobal Uauy (JIC)

2. Grain Composition – Peter Shewry, Rowan Mitchell (RRes), Kay Trafford (NIAB)

3. Grain Development – Cristobal Uauy (JIC)

4. Biotic Stress (fungi and insects) – Matthew Moscou (TSL), Kim Hammond-Kosack (RRes)

5. Abiotic Stress (drought, high temp) – John Foulkes (UoN)

6. Nutrient Use Efficiency – Malcolm Hawkesford (RRes)

7. Canopy Development / Whole Plant Architecture – Clare Lister & Simon Griffiths (JIC)

8. Flower biology – Zoe Wilson (UoN), Scott Bowden (JIC)

9. Root architecture – Malcolm Bennett (UoN), Peter Buchner (RRes)

10. Recombination – James Higgins (Leicester Uni)

The 96 Wheat Cultivars

Chosen by WGIN Management Team Members and Trait

cultivar nominators ID LS/GA 1 A. speltoides 2140022 SB 2 Abbot Aegilops peregrina (variabilis) КΤ 3 Alcedo RAGT 4 SB 5 Ambrosia SG/MH/VM/SB/CL 6 Avalon 7 Badger CL КΚ 8 Bobwhite Brompton LG 9 SB 10 Buster SG/MH/VM/SB/CL 11 Cadenza Cellule RAGT 12 SB 13 Charger SG 14 Chinese Spring 15 Claire RAGT/SG/PS/MH/0 Coppadra кк 16 PS/MH 17 Cordiale 18 RAGT Cougar 19 Crusoe RAGT/MH LG 20 Dickens SB 21 Einstein LS/GA 22 ENT-228 23 Fielder кк 24 Flanders RAGT MH 25 Gallant SG/CL 26 Garcia ECS 27 Gatsby SB 28 Gladiator LG/syn 29 Graham KHK/VM 30 Hereford 31 Hereward RAGT/PS/MH/SB/C 32 Hobbit SB

•	, ID	Coordinators	nominators	ID	cultivar	nominators
	33	Hustler	SB	65	Sumai 3	RAGT
	34	Isengrain	PS	66	T. monoccocum MDR031	KHK/VM
	35	Istabrag	PS/MH	67	T. monoccocum MDR037	LS/GA/VM
	36	JB Diego	RAGT	68	T. monoccocum MDR043	кнк/ум
	37	Kronos	WGIN MM team	69	T. monoccocum MDR045	LS/GA
CL/EO+JF	38	KWS Santiago	RAGT	70	T. monoccocum MDR046	RRES/VM
,	39	KWS Silverstone	LG	71	T. monoccocum MDR049	LS/GA
	40	KWS Siskin	RAGT	72	T. monoccocum MDR308	кнк
	41	KWS Trinity	LG	73	T. monoccocum MDR657	LS/GA
	42	Malacca	PS/MH/CL	74	Taichung 29	KK/JRudd
L	43	Maris Huntsman	SB	75	Ukrainka	PS
	44	Maris Widgeon	MH	76	USU-Apogee	кк
	45	Marksman	PS	77	Valoris	PS
<u> </u>	46	Mercia	МН	78	Veranopolis	КК
/CL	47	Napier	CL	79	Watkins 115	LS/GA
	48	Oakley	RAGT	80	Watkins 141	SG
	49	Paragon	SG/MH/AR/VM	81	Watkins 160	SG
	50	Piko	RAGT	82	Watkins 199	LS/GA/SG
	51	Reflection	LG	83	Watkins 203	VM
	52	Relay	RAGT	84	Watkins 239	SG
	53	Revelation	LG	85	Watkins 209	
	54	Rialto	RAGT/SB/PS	86	Watkins 246	SG
	55	Riband	МН/КК	87	Watkins 292	SG
	56	Robigus	RAGT/SG/MH/AR	88	Watkins 387	SG
	57	Savannah	CL	89	Watkins 579	LS/GA
	58	Scout	RAGT	90	Watkins 624	LS/GA
	59	Sear Synthetic	SG	91	Watkins 733	VM
	60	Skyfall	RAGT	92	Watkins 777	VM/SG
	61	Soisson	RAGT/PS/MH	93	Watkins 786	VM
	62	Solstice	RAGT/GA_LS/MH	94	Xi19	RAGT/PS/MH
/CL	63	Spark	PS/CL	95	Yumai 34	PS
	64	Stigg	MH	96	Zebedee	EO+JF

Gene IDs received & Workflow

A total of **1355 Gene IDs** distributed as:

(9) Root Architecture (8) Flower Biology (7) Canopy Development (6) Nutrient Use Efficiency (5) Abiotic stress (3) Grain Development (2) Grain Composition

(1) Yield Resilience

250

Workflow

 Retrieve coding sequences (CDS) from Ensembl Biomart (http://plants.ensembl.org/biomart)

- BLAST CDS against **IWGSC RefSeq v1.0** (https://wheaturgi.versailles.inra.fr/Seq-Repository/Assemblies):
- Obtain coordinates on chromosome with 100% ID
- Use coordinates on relevant RefSeq v1.0 chromosome in Geneious to obtain 1700bp upstream of ATG
- Generate FASTA file with all promoter/5'UTR seqs

Too Many Promoters!

MYbaits 2 set (max. 40,000 baits):

- 88 genes have (up to 4) alternate ATGs
- Inclusion of 1700bp upstream for all of these exceeded the max MYbaits number
- Including promoters for ALL genes and ALL alternate start sites needed a reduction of 1100 MYbaits: achieved by combining overlapping promoters

ATG (1) \rightarrow ATG (2) \rightarrow 1700bp 1700bp Combined promoter: >1700bp and <3400bp 1A-0075430-T6-9 (2717bp) b) NO overlap: 2 separate promoters with individual MYbaits (56 MYbaits/promoter) ATG (1) \rightarrow ATG (2) \rightarrow 1700bp 1700bp 1700bp 1700bp 1700bp 1700bp

a) overlap: combined promoter with shared MYbaits (< <56 MYbaits/promoter)

28 Promoters not (fully*) combined

 For these 3 genes, 2 out of 3 alternate Promoters were combined

Promoters/UTRs with Undeterminate Nucleotide Stretches (Ns)

a) N stretches within 1700bp: 136

1. 1A-0024490-T8-11r - 350N 2. 1A-0026030-T1-16 - 237N 3. 1A-0026620-T6-29r - 474N 4. 1A-0031460-T4-49r - 10N 5. 1A-0036950-T10-23 - 483N 6. 1A-0037970-T7-20 - 312N 7. 1A-0047200-T3-20r - 282N 8. 1A-0069860-T4-51r - 414N 9. 1A-0075220-T2-50 - 431N 10. 1B-0088580-T1-6r - 209N 11. 1B-0108420-T2-52 - 388N 12. 1B-0108930-T6-29r - 433N 13. 1B-0122280-T4-40r - 327N 14. 1B-0123110-T8-22r - 160N 15. 1B-0148870-T4-49r - 332N 16. 1B-0150920-T6-48r - 437N 17. 1D-0192320-T8-22r - 246N 18. 1D-0193790-T6-29-1r - 268N 19. 1D-0221450-T7-42r - 276N 20. 1D-0221450-T7-42r - 217N 21. 1D-0258100-T1-25 - 512N 22. 1D-0264750-T6-48 - 399N 22 24 0222070D T1 E 402NI

b) N stretches reducing 1700bp: 36

Distribution of WGIN Trait Genes in Wheat Genome is NOT even

6D U 1D 4D 1A 3D 6A 7D 2D 4B 1B 5D 5A 5B 6B 7A 4A 7B 3A 2A 2B 3B

MYbaits filtration to find baits (primers) specific for each homoeologue

MYbaits Coverage

How many baits are **specific** for each individual promoter sequence?

trait&gene no.	gene	WGIN Promotome ID	MYbaits	MYbaits coverage (%)	homoeologue ID (%)
T4-1	TaCERK1	7A-1826280-T4-1	18	74.4	29.8
Г4-1	TaCERK1	7B-1934340-T4-1	11	51.3	
T4-1	TaCERK1	7D-2045100-T4-1	9	39.8	
Г4-10	TaMPK3	4A-1008960-T4-10r	7	41.6	57.5 but 84.7 to [-800]
Г4-10	TaMPK3	4B-1033300-T4-10	14	65.2	
T4-10	TaMPK3	4D-1148960-T4-10r	12	58.4	
T4-11	TaMPK6	7A-1834630-T4-11r	4	21.6	45.5 but 69.9 to [-800]
T4-11	TaMPK6	7B-1954300-T4-11r	5	25.4	
T4-11	TaMPK6	7D-2040040-T4-11r	6	32.5	
T4-12	TaOCP3	7A-1770880-T4-12	13	52.2	24.3
T4-12	TaOCP3	7B-1867300-T4-12r	18	77.6	
T4-12	TaOCP3	7D-2004100-T4-12r	22	91.5	
T4-13	TaOPR3	7A-1801960-T4-13	8	43.3	49.1
T4-13	TaOPR3	7B-1860490-T4-13	7	29.6	T4-13 = T5-14???
T4-13	TaOPR3	7D-2008410-T4-13	6	25.9	
T4-14	TaNH1	3A-0688550-T4-14	14	65.9	42
T4-14	TaNH1	3B-0744050-T4-14	10	43.1	
Г4-14	TaNH1	3D-0914040-T4-14	12	58.4	
T4-15	TaBI-1	1D-0240360-T4-15	7	28.5	25.1
T4-15	TaBI-1	6A-1573990-T4-15	15	76.2	
T4-15	TaBI-1	6B-1671980-T4-15r	17	82.6	
Г4-16	TaLSD1	7A-1798270-T4-16	6	36	46.5 but 86.9 to [-580] and 100% (1080-1176]
r4-16	TaLSD1	7B-1864900-T4-16	15	72.9	
T4-16	TaLSD1	7D-1974840-T4-16	14	71.1	

Mybaits Filtration

(performed by Dr. Jacob Enk @ MYcroarray)

- WGIN_Promotome_FASTA 1,402 unique entry IDs, **1373* unique sequences**:
- **RepeatMasked** this using the cross-match algorithm and employing the Triticum repeat library available at RepeatMasker.org
- used default bait length and tiling configuration (**120nt baits**, tiled each 60nt, or "2X" bait coverage)
- Generates **36,352 baits** sequences, >35K unique.

4

Filtration of baits for specificity the by eliminating baits that

 (1) map to multiple locations in TGAC genome build with strong expected hybridization and/or
 (2) were 25% or more RepeatMasked.

• A final 18,112 baits survived this filtration (17,745 unique*)

* differences: same gene ID provided for multiple traits -> seqs removed from all but one trait

Duplicate Gene IDs

1)	T1-3 = T6-41
2)	T1-5 = T8-17
3)	T2-2 = T3-13
4)	T2-3 = T3-12
5)	T2-5 = T3-17
6)	T2-13 = T3-25
7)	T2-27 = T3-27
8)	T2-29 = T3-26
9)	T2-35 = T3-23
10)T2-37 = T3-16
11)T2-39 = T3-24
12)T2-43 = T3-30
13)T2-45 = T3-31

14)T2-47 = T3-32
15)T2-49 = T3-33
16)T2-50 = T3-34
17)T2-51 = T3-35
18)T2-52 = T3-36 = T9-67
19)T2-53 = T3-28
20)T2-54 = T3-29
21)T2-56 = T3-39
22)T2-57 = T3-40
23)T2-58 = T3-42
24)T2-59 = T3-43
25)T2-60 = T3-44
26)T2-61 = T3-22

27)T6-1 = T9-63 28)T6-3 = T9-64 29)T6-5 = T9-58 30)T6-29 = T8-15 31)T6-30 = T8-16 32)T7-33 = T9-23 33)T7-36 = Ppd-A1 (control) 34)T7-53 = T8-27

MYbaits filtration for 1A-0075270A-T4-17

only 6 Baits pass stringent criteria

Bait	%GC	%RM	BLAST-Hits	40-60C	60-62.5C	62.5-65C	65-67.5C	67.5-70C	>70C	Stringent	Moderate	Relaxed	Sequen
1A-0075270A-T4-17_0	35	0	32	17	0	6	0	0	0	pass	pass	pass	TGCTATGATG
1A-0075270A-T4-17_64	34.2	0	25	13	1	7	1	0	0	fail	pass	pass	AAATATTTTCA
1A-0075270A-T4-17_128	35.8	0	40	31	1	6	0	0	0	fail	fail	fail	CCTCTATTCTC/
1A-0075270A-T4-17_192	34.2	0	39	25	1	8	0	0	0	pass	pass	pass	TACTTGTATTT
1A-0075270A-T4-17_256	29.2	0	21	9	5	4	0	0	0	pass	pass	pass	AATCTAGGTAI
1A-0075270A-T4-17_320	29.2	0	22	8	9	3	0	0	0	pass	pass	pass	ATGAGGATAA
1A-0075270A-T4-17_384	40.8	0	33	15	2	1	6	3	0	fail	fail	fail	CATTAATGCTA
1A-0075270A-T4-17_448	39.2	0	15	3	1	4	6	0	0	fail	fail	fail	AAAAGTGCTT/
1A-0075270A-T4-17_512	39.2	0	23	7	0	2	6	4	0	fail	fail	fail	TTTCAGATTCT
1A-0075270A-T4-17_576	45.8	0	17	2	0	0	1	10	1	fail	fail	fail	CAAAACCTTTG
1A-0075270A-T4-17_640	41.7	0	14	0	2	3	8	0	0	fail	fail	fail	TCTACTCACAT
1A-0075270A-T4-17_704	35	0	15	1	8	5	0	0	0	pass	pass	pass	TTACTTGCAAT
1A-0075270A-T4-17_768	35	0	22	3	2	6	6	0	0	fail	fail	fail	TAACTTATATC
1A-0075270A-T4-17_832	34.2	0	43	18	4	9	0	0	0	pass	pass	pass	GATACCAGTTI
1A-0075270A-T4-17_896	40.8	0	16	1	0	1	6	7	0	fail	fail	fail	AAAAATGGAG
1A-0075270A-T4-17_960	42.5	0	18	3	0	2	8	4	0	fail	fail	fail	GGAGAAGGCC
1A-0075270A-T4-17_1024	37.5	0	21	6	1	5	8	0	0	fail	fail	fail	ATACAGTTCCA
1A-0075270A-T4-17_1088	36.7	0	29	4	1	6	10	0	0	fail	fail	fail	AAGAAGAAGC
1A-0075270A-T4-17_1152	40.8	0	23	5	0	5	8	4	0	fail	fail	fail	AGCTGCTGCA
1A-0075270A-T4-17_1216	41.7	0	25	8	4	9	3	0	0	fail	fail	pass	GAGGTGGTTA
1A-0075270A-T4-17_1280	39.2	0	25	6	3	14	1	0	0	fail	fail	fail	AGGTGGCTAA
1A-0075270A-T4-17_1344	36.7	0	24	4	4	9	6	0	0	fail	fail	fail	TGAATTTCTTA
1A-0075270A-T4-17_1408	35.8	0	27	5	7	13	0	0	0	fail	fail	fail	AATGTCATTGC
1A-0075270A-T4-17_1472	36.7	0	29	8	6	13	1	0	0	fail	fail	fail	TCTTATGCAGC
1A-0075270A-T4-17_1536	39.2	0	21	1	7	12	0	0	0	fail	fail	fail	AAAGTTGATCI
1A-0075270A-T4-17_1580	47.5	0	3	0	0	0	1	1	0	fail	fail	fail	CAAGGGCACT

T4-17 (TaEDR1) A homoeologue – 38.5% Mybaits coverage

WGIN Promotome MYbaits coverage

Comparison of Homoeologous Promoter Sequences

trait&gene no.	gene	WGIN Promotome ID	MYbaits	MYbaits coverage (%)	homoeologue ID (%)
T4-1	TaCERK1	7A-1826280-T4-1	18	74.4	29.8
T4-1	TaCERK1	7B-1934340-T4-1	11	51.3	
T4-1	TaCERK1	7D-2045100-T4-1	9	39.8	
T4-10	TaMPK3	4A-1008960-T4-10r	7	41.6	57.5 but 84.7 to [-800]
T4-10	TaMPK3	4B-1033300-T4-10	14	65.2	
T4-10	TaMPK3	4D-1148960-T4-10r	12	58.4	
T4-11	TaMPK6	7A-1834630-T4-11r	4	21.6	45.5 but 69.9 to [-800]
T4-11	TaMPK6	7B-1954300-T4-11r	5	25.4	
T4-11	TaMPK6	7D-2040040-T4-11r	6	32.5	
T4-12	TaOCP3	7A-1770880-T4-12	13	52.2	24.3
T4-12	TaOCP3	7B-1867300-T4-12r	18	77.6	
T4-12	TaOCP3	7D-2004100-T4-12r	22	91.5	
T4-13	TaOPR3	7A-1801960-T4-13	8	43.3	49.1
T4-13	TaOPR3	7B-1860490-T4-13	7	29.6	T4-13 = T5-14???
T4-13	TaOPR3	7D-2008410-T4-13	6	25.9	
T4-14	TaNH1	3A-0688550-T4-14	14	65.9	42
T4-14	TaNH1	3B-0744050-T4-14	10	43.1	
T4-14	TaNH1	3D-0914040-T4-14	12	58.4	
T4-15	TaBI-1	1D-0240360-T4-15	7	28.5	25.1
T4-15	TaBI-1	6A-1573990-T4-15	15	76.2	
T4-15	TaBI-1	6B-1671980-T4-15r	17	82.6	
T4-16	TaLSD1	7A-1798270-T4-16	6	36	46.5 but 86.9 to [-580] and 100% (1080-1176]
T4-16	TaLSD1	7B-1864900-T4-16	15	72.9	
T4-16	TaLSD1	7D-1974840-T4-16	14	71.1	

WGIN Promotome - Homoeologous Promoter Similarities

* regions \geq 100bp

37,052 (on scaffold) = 418,057,131 (on Chr 1A, reverse strand)

39,487 (on scaffold) = 418,054,696 (on Chr 1A, reverse strand)

<u>T9-11 ctd.</u>

Both alternate promoters have strikingly similar insertions in A homoeologue with

- Similar position from ATG
- Very similar lengths (83 & 85bp) & 61% homology
 - Very similar 2° structure (Palindromic)

1A-#-T9-11-1r insert has 99% identity to Taes Athos

(DNA-transposon, TIR, Mariner; Stowaway MITE, complete element)

	1	10	20	30	40	50	60	70	80 85
Consensus	TACTCCC	TCCGTAAA	CTAATATAA	GAGTGTTTA	11 STAL 1972 / SAN	TAGTGATCTA/	COLUMN TO A CARDON CONTRACTOR	ATTAGT	ACAGAGGGAGTA
Identity					_				
🖙 🕬 1. 1A-0017770-T9-11-1r insert	TACTCCC	TCCGTAA	CTAATATAA	GAGTGTTTA	GATCACTATIT	TAGTGATCCA/	ACGCTCTTA	FATTAGTIT	ACAGAGGGAGTA
	Æ								
C+ FWD 2. DTT_Taes_Athos_42j2-5	TACTCCC	TCCGTAAA	CTAATATAA	GAGTC TA	GATCACTATIT	TAGT <mark>Α</mark> ΑΤCΤΑ/	ACGCTCTTA	FATTAGTTT	ACAGAGGGAGTA
C+ FWD 3. DTT_Hvul Athos_M801L24-1	TACTCCC	TCTGTAAA	CTAATATAA	GAG <mark>CA</mark> TTTA	GATCACTACTA	TAGT <mark>A</mark> ATCTA/	ACGCTCTTA	FATTAGTET	ACAGAGGGAGTA
C+ FWD 4. DTT Hvul Athos BJ447578-1	CTCCC	TCTGTAAA		GAGTGTTTA	GATCACTATIT	TAGTGATCTA	ACGCTCTTA	GTTTCTTT	TTGGAGGAAG
C+ FWD 5. DTT Hvul Athos B 455329-1	CTTCC	TCCAAA	GAAACATAA	GAGCGTTTA	GATCACTA <mark>AAA</mark>	TAGTGATCTA/	AACACTCTTA	FAGTTGTTT	ACAGAGGGAG
C+ FWD 6. DTT Hvul Athos AJ475374-1	CTCCC	TCCGTAAA	CTAATATAA	GATCGTTTA	GATCACTACT	TAGTGATCTA	AACACTCTTA	FATTAGTET	ACAGAGGGAG
C+ FWD 7. DTT Taes Athos B 282680-1	СТССС	TCCGTAAA	CTAATATAA	GAGTGTTTA	GATAACTACTT	TAGTGATCTA/	ACGCTCTTA	FATTAG C TT	ACAGAGGGAG
C+ FWD 8. DTT Taes Athos BI270008-1	CTCCC	TCCGTAAA	CTAATATAA	GAG <mark>CATTT</mark> A	GATCACTATIT	TAGT ATCTA/	ACGCTCTTA	FATTAGTET	ACAGAGGGAG
C+ FWD 9. DTT_Taes_Athos_BG904862-1	CTCCC	TCCGTAAA	CTAATATAA	GAGTGTTTA	GAT <mark>G</mark> ACTATTT	TAGTGATCTA/	ACGCTCTTA	FATTAGTET	ACTGAGGGAG
C+ FWD 10. DTT_Taes_Athos_BJ242729-1		TCCGTGAA	CTAATATAA	GAGTGTTTA	GATTATT	TAGTGATCTA	ACGCTCTTA	FATTAGTIT	ACAGAGGGAG

TREP, the TRansposable Elements Platform (http://botserv2.uzh.ch/kelldata/trep-db/blast/blastTREP.html)

There are **6,330 occurances** of this MITE in the Wheat genome (IWGSC), but **only 1 exact copy** with 85/85 identity (= 1A-0017770-T9-11-1r location)

1A-#-T9-11-2r insert has up to 98% identity to Taes Hades

(DNA-transposon, TIR, Mariner; Stowaway MITE, complete element)

There are **4,969 occurances** of this MITE in the Wheat genome (IWGSC) with **3 exact copies** on Chr 1A (= 1A-0017770-T9-11-1r location), 2A & 2B

T9-11-1 Homoeologues Expression Patterns

Expression graph modified from Wheat Expression Browser (Cristobal Uauy (JIC) http://www.wheat-expression.com)

<u>1A-0017770-T9-11-1r & -2r inserts</u>

b) NCBI BLAST against ALL species (Plants, Fungi, Animalia etc):

ONLY hits in Pooideae → highly grass-specific MITEs

Genus	Pooideae	(largest subfamily of the grass family Poaceae)					
Triticum aestivum		Familia: Poaceae					
Aegilops tauschii subsp. tauschii		Subfamilia: Pooideae					
Aegilops sharonensis		Tribus: Hordeeae					
Aegilops longissima		Subtribus: Triticinae					
Triticum monococcum subsp. monococcum cultiv		Genera: Aegilops – Dasypyrum – Thinopyrum – <mark>Triticum</mark>					
Triticum urartu	Triticinae						
Aegilops bicornis							
Triticum dicoccoides							
Triticum turgidum subsp. dicoccon							
Triticum timopheevii subsp. armeniacum							
Aegilops speltoides Pina							
Secale cereale		Familia: Poaceae					
Agropyron cristatum		Subfamilia: Pooideae					
Agropyron mongolicum		Tribus: Hordeeae					
Hordeum vulgare		Subtribus: Hordeinae					
Kengyilia melanthera	Llardainaa	Genera: Agropyron – Anthosachne – Australopyrum – Connorochloa					
Kengyilia grandiglumis	Hordeinae	– Crithopsis – Elymus – Eremopyrum – Festucopsis					
Kengyilia mutica		– Henrardia – Heteranthelium – Hordelymus – <mark>Hordeum</mark>					
Kengyilia longiglumis		– Hystrix – <mark>Kengyilia</mark> – Leymus – Pascopyrum					
		– Peridictyon – Psathyrostachys – Pseudoroegneria – Secale					
		– Stenostachys – Taeniatherum					

T4-54r (AK360626 – RING-H2 finger protein)

B homoeologue insertion with stable secondary structure (palindrome)

- > Very stable 2° structure
- > Possible MITE ?
- > 1,020 hits in Wheat Genome
- > **NO match** in TREP database &
 - IWGSC_refseqv1.0_TransposableElements_2017Mar13

Chr 7B Map of 7B-1921350-T4-54r region With Surrounding Repeat Regions/Fragments

T4-54r homoeologue Expression Patterns

- Generally Higher Expression levels on 7B which contains the MITE
- 7B allele specifically up-regulated by Yellow Rust & Mildew (>48h)
- 7B allele specifically up-regulated by heat stress

TPM (log2 scale)

T9-40 (SGN3/GSO 1)

Precise number of Ns in IWGSC RefSeq v1.0 may be too large?

5' UTRs (UnTranslated Regions)

- The 5' untranslated region (5' UTR) (also known as a leader sequence or leader RNA) is the region of an mRNA that is directly upstream from the initiation codon. This region is important for the regulation of translation of a transcript by differing mechanisms in viruses, prokaryotes and eukaryotes.
- Most promoter elements are not a part of the mRNA sequence. They are upstream (towards 5') of the transcription start site. However, a certain class of promoters called downstream promoter elements (DPE) can overlap with the genetic region. These elements have been reported to lie at 29-33bp upstream of the transcription start site and are widely employed in Drosophila. Mapping of DPEs has been done for mouse and human genes as well.
- There is also evidence for small uORFs (upstream Open Reading Frames) inside the 5'UTRs that express peptides downregulating plant defense genes (Guoyong Xu *et al* Nature 2017).

T4 Promoters Grouped by 5'UTR Length

5'UTR Comparison

Should We Change The Project Name – Again?

WGIN Exome Capture

WGIN **Promotome** Capture

WGIN **PromoUTRome?** Capture

Key Outcomes So Far – Prior to MYbaits Capture

50 genes were reassigned to different chromosomes (TGAC → IWGSC), in 32 cases completing the ABD Homoeologue sets

Very specific primers identified **for each homoeologue**

71% of promoters with >50% MYbaits coverage

→ full 1700bp sequences expected for ALL of these
New MITE identified (let's call it Taes WGIN) – by aligning the homoeologous promoter/5'UTR sequences

Good evidence for **differential homoeologous expression** in Chinese Spring – vindicating the WGIN approach of capturing individual homoeologues

Chromosomes with highest densities for ALL Traits are **7D**, **7A & 1D** (243/1390)

Department for Environment Food & Rural Affairs

> The WGIN3 Management Team:

Acknowledgements

Defra

Wheat Genetic Improvement Network

Andrew Riche (RRes), Clare Lister (JIC), David Feuerhelm (Syngenta), Dhan Bhandari (AHDB), Edward Flatman (Limagrain), Gia Aradottir (RRes), Jacob Lage (KWS), Kim Hammond-Kosack (RRes), Kostya Kanyuka (RRes), Lesley Smart (RRes), Malcolm Hawkesford (RRes), Martin Cannell (Defra), Matthew Kerton (dsv-uk), Peter Shewry (RRes), Richard Jennaway (saatenunion), Ruth Bryant (RAGT), Sarah Holdgate (NIAB), Simon Berry (Limagrain), Simon Griffiths (JIC), Simon Penson (Campden BRI), Stephen Smith (Elsoms), Vanessa McMillan (RRes)

MYcroarray: Alison Devault, Jacob (Jake) Enk

- Trait Co-ordinators & colleagues: Kay Trafford (NIAB), Rowan Mitchell (RRes), Matthew Moscou (JIC), John Foulkes (Nottingham University), Peter Buchner (RRes), Nick Evens (RRes), James Connerton (JIC), Sigrid Heuer (RRes), Jose Fernandez (Nottingham University), Zoe Wilson (Nottingham University), Malcolm Bennett (Nottingham University), Laura Dixon (JIC), Scott Boden (JIC), James Higgins (Leicester University), Cristobal Uauy (JIC), Peter Jack (RAGT)
- Provision of cultivars:
 Mike Ambrose (GRU @ JIC), Simon Orford (JIC), Jacob Lage (KWS), Lesley Smart (RRes), Clare Lister (JIC), Nick Balaam (Senova Ltd), Kay Trafford (NIAB), Simon Berry (Limagrain)

Jill Maple (RRes), Jack Turner (RRes), Tom Yaxley (RRes)

Carlos Bayon (RRes), Martin Urban (RRes)

Rob King (RRes), Keywan Hassani-Pak (RRes)

> Bioinformatics:

> Laboratory:

Glasshouse etc: