Tools, resources, genotyping and phenotyping

Clare Lister and Simon Griffiths

6/10/2017

WGIN3 Projects: Griffiths' Lab

1. Dissecting UK drought tolerance in Paragon x Garcia
2. Quantifying agronomic impact of WGIN target genes using the Paragon NIL library
3. Informing multiple marker assisted selection for yield stability using Paragon library
4. A chromosome segment substitution library for Avalon x Cadenza
5. Understanding genotype x environment interaction in Avalon x Cadenza
6. Foundations for a new generation segregating populations for studying yield stability in the UK
7. Applying WGIN data to breeding by design for UK yield stability
8. Curation and distribution of WGIN germplasm

WGIN3 Projects: Griffiths' Lab

1. Dissecting UK drought tolerance in Paragon x Garcia
2. Quantifying agronomic impact of WGIN target genes using the Paragon NIL library
3. Informing multiple marker assisted selection for yield stability using Paragon library
4. A chromosome segment substitution library for Avalon x Cadenza
5. Understanding genotype x environment interaction in Avalon x Cadenza
6. Foundations for a new generation segregating populations for studying yield stability in the UK
7. Applying WGIN data to breeding by design for UK yield stability
8. Curation and distribution of WGIN germplasm

WGIN3 Projects: Paragon Library

1. Dissecting UK drought tolerance in Paragon x Garcia
2. Quantifying agronomic impact of WGIN target genes using the Paragon NIL library
3. Informing multiple marker assisted selection for yield stability using Paragon library
4. A chromosome segment substitution library for Avalon x Cadenza
5. Understanding genotype x environment interaction in Avalon x Cadenza
6. Foundations for a new generation segregating populations for studying yield stability in the UK
7. Applying WGIN data to breeding by design for UK yield stability
8. Curation and distribution of WGIN germplasm

NILs in the genetic background of Paragon:
Rht-D1, Rht-B1, Rht8, Ppd-B1, Ppd-D1, Lr19, 1BL.1RS, 8 eps QTL, Vrn1, Vrn3, 3N, grain shape QTL, QTL from the Watkins collection (BBSRC WISP), selected WGIN mutants.

1. Dissecting UK drought tolerance in Paragon x Garcia

- Drought Trial repeated 2016-2017 (and 2017-2018!)
- 177 PxG RILs, Paragon and Garcia
- Includes subset of Paragon Library (Ppd, Rht, Staygreen and 7DL introgression)
- Riverside Field (2016-17) and Football Field (2017-2018) Church Farm: fields with light, sandy soil and suitable slope.
- Soil water content and aerial monitoring
- Traits measured: Stage 31, booting, DTEM, height, yield, specific weight, TGWT*
- Other traits investigated: waxiness, awns, ear compactness,

Wheat
 Genetic
 Improvement
 Network

 1. Dissecting UK drought tolerance

 1. Dissecting UK drought tolerance in Paragon x Garcia

 in Paragon x Garcia}

Stage 31

Food \& Rural Affairs
$W_{\text {heat }}$
Genetic Improvement Network

1. Dissecting UK drought tolerance in Paragon x Garcia

- At potential of -33 kPa (-10 kPa for sand) soil is at Field Capacity
- Field Capacity is viewed as optimal condition for plant growth and microbial
$W_{\text {heat }}$

1. Dissecting UK drought tolerance in Paragon x Garcia

1. Dissecting UK drought tolerance in Paragon x Garcia

UAV imaging

11/05/2017

01/06/2017

30/06/2017
$W_{\text {heat }}$
Genetic
Improvement Network

1. Dissecting UK drought tolerance in Paragon x Garcia

- Garcia
- Paragon
$W_{\text {heat }}$
Genetic
Improvement
Network

1. Dissecting UK drought tolerance

 in Paragon x Garcia| | 2016 | | | | 2017 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\begin{array}{\|c\|} \hline \text { Locus } \\ \# \\ \hline \end{array}$ | Linkage group | $\begin{gathered} \% \text { Expl. } \\ \mathrm{Var} \\ \hline \end{gathered}$ | High
 allele | $\begin{array}{\|c} \hline \text { Locus } \\ \# \\ \hline \end{array}$ | Linkage group | $\begin{array}{\|c\|} \hline \% \text { Expl. } \\ \text { Var } \end{array}$ | High allele |
| Booting NI | 178 | 2B | 9.993 | Garcia | 178 | 2B | 9.284 | Garcia |
| | 203 | 2D | 21.515 | Paragon | 203 | 2D | 21.223 | Paragon |
| | 402 | 4D | 6.416 | Garcia | | | | |
| | | | | | 494 | 5B | 10.996 | Paragon |
| | 687 | 7A | 17.044 | Paragon | 687 | 7A | 10.762 | Paragon |
| Booting I | 178 | 2B | 9.464 | Garcia | 193 | 2B | 6.202 | Garcia |
| | 203 | 2D | 14.91 | Paragon | 204 | 2D | 53.926 | Paragon |
| | 688 | 7A | 19.699 | Paragon | 687 | 7A | 14.873 | Paragon |
| DTEM NI | 178 | 2B | 10.253 | Garcia | 178 | 2B | 6.55 | Garcia |
| | 204 | 2D | 22.262 | Paragon | 203 | 2D | 21.318 | Paragon |
| | | | | | 494 | 5B | 11.974 | Paragon |
| | 687 | 7A | 17.142 | Paragon | | | | |
| DTEM I | 178 | 2B | 9.849 | Garcia | 193 | 2B | 4.727 | Garcia |
| | | | | | 204 | 2D | 38.401 | Paragon |
| | 688 | 7A | 15.3 | Paragon | 690 | 7A | 21.061 | Paragon |
| Height NI | 16 | 1A | 4.39 | Garcia | 16 | 1A | 4.794 | Garcia |
| | 286 | 3B | 3.652 | Garcia | | | | |
| | 401 | 4D | 62.258 | Paragon | 401 | 4D | 62.299 | Paragon |
| Height I | 16 | 1A | 6.365 | Garcia | 16 | 1A | 5.068 | Garcia |
| | 292 | 3B | 3.952 | Garcia | 292 | 3B | 3.914 | Garcia |
| | 401 | 4D | 59.611 | Paragon | 401 | 4D | 59.277 | Paragon |
| | | | | | 700 | 7A | 5.423 | Paragon |
| Yield $\mathbf{N I}$ | | | | | 173 | 2B | 17.717 | Garcia |
| | 743 | 7B | 16.81 | Garcia | | | | |
| Yield I | | NO QTL | s DETEC | CTED | 18 | 1A | 11.358 | Garcia |
| | | | | | 173 | 2B | 16.986 | Garcia |
| Specific Weight NI | 177 | 2B | 8.997 | Garcia | 145 | 2B | 11.341 | Garcia |
| - | 232 | 3A | 6.054 | Paragon | | | | |
| \bigcirc | 403 | 4D | 29.213 | Paragon | 402 | 4D | 33.676 | Paragon |
| | 450 | 5A | 2.47 | Garcia | | | | |
| | | | | | 781 | 7D | 5.234 | Garcia |
| Specific Weight I | | | | | 20 | 1A | 5.003 | Garcia |
| | | | | | 173 | 2B | 9.408 | Garcia |
| | 401 | 4D | 38.147 | Paragon | 401 | 4D | 33.018 | Paragon |
| | 441 | 5A | 6.766 | Paragon | | | | |
| | 455 | 5A | 6.978 | Garcia | | | | |

| 455 | 5A | 6.978 | Garcia |
| :--- | :--- | :--- | :--- | :--- |

Stage 31 (1 rep only)

Locus	\%Expl.	High value
name	Var.	allele
BS00090234_2B	12.140	Garcia
BS00054733_5A	12.258	Paragon

Waxiness
Tillering

BS00054733_5A
12.258
2. Quantifying agronomic impact of WGIN target genes using the Paragon NIL library

Subset of Paragon Library

Paragon	
Lr19 Kamb1	7DL introgression*
Par Mutant 2316b	Staygreen
Ppd 1x Early	DTEM
Ppd 2x Early	DTEM
Ppd 3x Early	DTEM
Ppd KO 2x	DTEM
Rht 8 Mara	Height
Rht B1 Robigus	Height
Rht D1 Alchemy	Height

- Drought Trial
- Phenospex
*from Agropyron elongatum

Paragon Library in Drought Trial - 2016 v 2017

- Yields higher in 2016 than 2017 for Environment Food \& Rural Affairs
- Little difference in yields between NI and I in 2016
- Large effect on yield between NI and I in 2017 for most lines
- Subset PL lines drilled under Phenospex (2015-2016/2016-2017)
- Two randomised blocks of 16
- One treatment - all plots + nitrogen ($40 \mathrm{~kg} / \mathrm{h}$)
- Two subsequent treatments +/- additional nitrogen ($250 \mathrm{~kg} / \mathrm{h}$)

> Had reasonable results last year but this years results difficult to interpret due to heavy sampling and drought conditions.
$W_{\text {heat }}$

Genetic

Improvement Network
2. Paragon NIL Library

- Collaboration with Ji Zhou's group (EI)
- Phenospex measurements show time when growth rates of Paragon/Rht8 diverge from RhtB1/RhtD1

3. Informing multiple marker assisted selection

 for yield stability using the Paragon library- Lines generated to test this:
- RhtB1 x Rht8
- RhtD1 x Rht8
- RhtB1 x RhtD1
- 1 m plots 2016-17

娄
Department
for Environment
Food \& Rural Affairs

Wheat
3. Informing multiple marker assisted selection for yield stability using the Paragon library

- Lines generated to test this:
- RhtB1 x Rht8
- RhtD1 x Rht8
- RhtB1 x RhtD1

Autumn drilling of yield trial

- In addition a 'winter Paragon' was produced by crossing in VrnA1 + VrnB1 from Malacca - see increased yield with winter Paragon (Simon Orford)
- Subsequently crossed into Rht8 / RhtB1 / RhtD1 to produce winter, semi-dwarf Paragon

1. Dissecting UK drought tolerance in Paragon x Garcia
2. Quantifying agronomic impact of WGIN target genes using the Paragon NIL library
3. Informing multiple marker assisted selection for yield stability using Paragon library
4. A chromosome segment substitution library for Avalon x Cadenza
5. Understanding genotype x environment interaction in Avalon x Cadenza
6. Foundations for a new generation segregating populations for studying yield stability in the UK
7. Applying WGIN data to breeding by design for UK yield stability
8. Curation and distribution of WGIN germplasm
$W_{\text {heat }}$
Genetic Improvement Network
9. A chromosome segment substitution library (CSSL) for Avalon x Cadenza

- The BC3 NILs carry selected genetic foreground in the QTL regions (height, heading, and yield)
- In addition each line carries $\sim 12.5 \%$ random chromosomal background.
- Plan to tile the whole genome with chromosome segments to make recombinant substitution lines for genome.

- Produced ‘Graphical Genotypes’ for all 21 chromosomes
- Selected lines to give the optimal tiling path for each chromosome
- Do not have complete coverage of genome
- F2 progeny of crosses to recurrent parent of selected lines to be genotyped with BS markers to determine the presence of required segment(s) [2018]
- 94 individuals, from 60 selected NILs $=\sim 6000$ DNA extractions
- Individually chosen sets of ~ 25 KASP markers for each NIL
- Seed of these lines will be bulked and made available to the community

${ }^{W_{\text {noen }}}$ Sene 6 . Foundations for a new generation segregating Inpocemene Nemook pop

Female		Male	RL value Diversity target	RL value Diversity target	RL value Diversity target	DTEM HT LODGE
GS31 YLD						

- All crosses at F2
- Populations in pink at F4 (-> F5/F6) aiming for ~400 lines each - Populations in yellow at F3 (-> F5/F6) aiming for ~400 lines each

Wheat
Genetic
Improvement
Network

7. Applying WGIN data to breeding by design for UK yield stability

- 'Ideal' ACDH lines to be crossed were selected by analysis of the QTL data
- These would have three high yielding QTL (GY) alleles
- However most 'ideal' lines had unfavourable QTL alleles elsewhere
- Therefore made best selection possible...

Cross	Parent 1	Parent 2	
Cross 1	DH109	DH160	DH109 is high yielding parent. DH160 has complementary alleles at all selected loci for achieving target genotype
Cross 2	DH61	DH182	Neither parents carried all favourable GY alleles, but between the parents all favourable alleles were present.
Cross 3	DH27	DH61	Neither parents carried all favourable GY alleles, but between the parents all favourable alleles were present.

Cross	Parent 1	Parent $\mathbf{2}$	
Cross 1	DH109	DH160	F2 progeny only from 1 plant
Cross 2	DH61	DH182	F2 progeny from many plants
Cross 3	DH27	DH61	F2 progeny from many plants

- F2 lines need to be genotyped but lack resources to do this...
- 3 N alien introgression (from Aegilops uniaristata) into CS
- Shows aluminium tolerance: Al toxicity primarily affects the division and elongation of the root apex
- 3N line shows prolific root phenotype
- Three different recombinant lines (Rec4-1, Rec 5-1 and Rec 6-3)
- Crossed to winter elite lines - Cordiale, Napier and Robigus
- Difficult to get markers to follow introgressed region...
- ... few homozygous lines identified
- Autumn drilling of multiplication plots from Rec5-1 x Cordiale

- QTL on 4A for DTEM in AxC NILs
- Only identified when Axiom mapping data gave better coverage of chromosome 4A
- Possibly PhyB

- Lines homozygous for the QTL region in an Avalon or Cadenza background have been identified
- Autumn drilling of multiplication plots

Andrew Riche

WGIN management meeting Oct 2017

42
Department for Environment Food \& Rural Affairs

$W_{\text {neat }}$

Genetic Improvement Network

Lawes Agricultural Trust

Activities

- Continued regular measurements - anthesis, senescence, grain and straw yield
- Extra Wgin 3 work - sampling at anthesis, measurement of mineral uptake during grainfill (8+ elements)
- Continued regular monitoring by UAV (21 occasions, Nov - July)

Used by others as a resource:

- George Savill, PhD student, assessing grain protein distribution
- Dr Y Wan with Zhiqiang Shi (PhD student) low protein wheat quality (5 lines)
- Dr P Buchner with Anne Rossman (PhD student) investigating effect of applying late foliar N on 4 varieties

Growth and yield, 2004-2017 (1)

Anthesis occurred between $26^{\text {th }}$ May and $12^{\text {th }}$ June

$$
\begin{array}{ll}
21 / 6 / 17 & 31.3^{\circ} \mathrm{C} \\
28 / 6 / 17 & 14.7^{\circ} \mathrm{C}
\end{array}
$$

Rothamsted WGIN N200 Grain yield 2004-2017

- Barrel (highest yielding Gp3) replaces Cocoon
- Zyatt (highest yielding Gp 1) replaces Gallant
- Seed ready, should be drilled next week

OAV activities

- 2017 images not yet processed - priority for the autumn
- Some preliminary trials of disease ID from llavimaoes

Ambient light sensor

5 m altitude with 25 mm lens, $0.65 \mathrm{~mm} /$ pixel With 45 mm lens, $0.37 \mathrm{~mm} /$ pixel

N HI and S HI (2012-2016 means)

Influence of N nutrition on total N and S uptake and partitioning in 20 modern wheats

Malcolm Hawkesford March Castle David Steele Nicolas Virlet Adam Michalski

Farm staff:

Stephen Goward
Chris Mackay
Nick Chichester-Miles

WGIN3 Management Meeting $6^{\text {th }}$ October 2017

Screening germplasm for resilience to aphids (WP2.3)

Gia Aradottir

Screening germplasm for resilience to aphids (WP2.3)
Information to establish the likely genetic basis of resistance to cereal aphids

Crosses of T. monococcum lines made by Mike Hammond-Kosack: MDRO37 (susceptible) x MDR045, MDR049 and MDR657 (all showing evidence of partial resistance)

F1, F2 and F3 generations of these crosses have now been tested in the phenotyping screen against both aphid species. F3s of each cross tested included plants with the best and the worst effective partial resistance to the aphid species.

S. avenae on T. monococcum F3 crosses of MDR37 $\times 45$

S. avenae on T. monococcum F3 crosses of MDR37 $\times 657$

R. padi on T. monococcum F3 crosses of MDR37 $\times 49$

R. padi on T. monococcum F3 crosses of MDR37 $\times 45$

<0.1 0.1-0.15 0.15-0.2 0.2-0.25 0.25-0.30.3-0.35 0.35-0.40.4-0.45 0.45-0.5
——MDR037×045 - - - Solstice
R. padi on T. monococcum F3 crosses of MDR37 x 657

Screening germplasm for resilience to aphids (WP2.3)
Information to establish the likely genetic basis of resistance to cereal aphids

- F3 generation has been harvested
- Need threshing and decisions made on further phenotyping
- Tissue samples collected and waiting to be tested

Rothamsted Research

 where knowledge grows
WGIN 3
 Resistance to foliar diseases

Vanessa McMillan
Kim Hammond-Kosack

Resistance to multiple foliar diseases

Watkins 2008 Field Trial

10 Watkins accessions with a high degree of resistance to all 4 foliar pathogens

		2008 Disease assessments				
Accesssion	Growth habit	Country of Origin	Yellow rust	Brown rust	Septoria	Mildew
18	Spring	India	0	0	T	T
137	Spring	Australia	T	T	0	T
203	Winter	India	0	0	0	T
231	Spring	Hungary	0	0	T	0
262	Spring	Canary Islands	0	0	0	0
399	Spring	China	T	0	T	0
495	Spring	Morocco	0	0	T	0
610	Spring	Yugoslavia	0	0	T	T
733	Spring	Iran	T	T	T	T
786	Spring	USSR	0	T	T	0

$$
0 \text { - no disease , } \mathrm{T}=\text { trace }
$$

Watkins foliar disease field trials

$1^{\text {st }}$ and $3^{\text {rd }}$ wheat replicated field trials

Three field seasons
2014-2015
2015-2016
2016-2017

Wheat
Genetic
Improvement
Network

Evidence of resistance to yellow rust

- Did susceptible Watkins lines escape disease in 2008 or change in YR races?
- Hereward and Paragon good source of resistance to current YR races

艮
Department
for Environment
Food \& Rural Affairs

Evidence of resistance to yellow rust

YR races	
Year Variety	
2000 Robigus	
2008 Solstice	
2011 Sterling	
2011 Warrior 1	
2012 Warrior 4	
2014 Kranich	
2015 Invicta	
2017 field trial - samples	
submitted to "Field	
Pathogenomics" pathogen	
surveillance programme	

- Did susceptible Watkins lines escape disease in 2008 or change in YR races?

Watkins 137

Highly susceptible
100 \% flag leaf disease severity on $24^{\text {th }}$ June 2015

ROTHAMSTED
RESEARCH

Watkins 733

Highly resistant

No yellow rust sporulation visible throughout whole field season

Watkins 203

Low levels of yellow rust sporulation
15 \% flag leaf area infected with yellow rust on $24^{\text {th }}$ June 2015

Paragon

Low levels of yellow rust sporulation
5 \% flag leaf area infected with yellow rust on $24^{\text {th }}$ June 2015 Large necrotic stripes

Brown rust on flag leaves

Watkins 786

- Watkins 733 and 786 were most resistant to yellow rust but are very susceptible to brown rust - do not possess multi disease resistance
- Difference in brown rust races between 2016 and 2017?
bioscience for the future

Septoria on lower leaves

Low levels of Septoria on all genotypes except 399 and Fielder where high levels of yellow rust are found, therefore impossible to assess Septoria infections

- All Watkins genotypes less susceptible to Septoria than Hereward and Paragon

Average disease scores across all field seasons

2014-2015 YR
only
2015-2016 YR, BR
and S
2016-2017
YR, BR
and S

Septoria levels low across both field seasons

Very little powdery mildew across all three field seasons on wheats -
Watkins 203 and 610 most promising fomshemanient high levels of resistance against multiple foliar diseases

- Watkins 610 may be escaping disease through later leaf emergence

Evidence of resistance to yellow rust

- Did susceptible Watkins lines escape disease in 2008 or change in YR races?

Watkins mapping population development

Summer 2015 Field crossing with cv. Fielder

Accession Number	Growth habit	Country of Origin	Ears crossed	F
203	Winter	India	8	31
231	Spring	Hungary	8	54
610	Spring	Yugoslavia	6	33
733	Spring	Iran	6	49
786	Spring	USSR	N/A	N/A

Summer 2016

- F_{1} grain sown in glasshouse to generate F_{2} and for backcrossing to cv . Fielder
- Watkins $786 \times$ Fielder crossing carried out in glasshouse at later date
- F_{1} grain included in a spring field trial 2016 to study inheritance

F_{1} plants - spring field trial

- Six F_{1} grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on $30^{\text {th }}$ June 2016 - flag leaf assessments

F_{1} plants - spring field trial

- Six F_{1} grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on $30^{\text {th }}$ June 2016 - flag leaf assessments

F_{1} plants - spring field trial

- Six F_{1} grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on $30^{\text {th }}$ June 2016 - flag leaf assessments

Resistance is dominant in
Watkins 733

$2017 \mathrm{~F}_{2}$ field trial

F_{2} field trial

- Two or four F_{2} populations from each of the four crosses sown (FxW203, FxW231, FxW610 and FxW733) + parents
- $10 \mathrm{~F}_{1}$ plants sown from FxW786 cross
- Plot size $=4$ rows $\times 1$ m length, 60-80 seeds sown for each population
- Drilled $14^{\text {th }}$ October 2016 in Sawyers 2
- After emergence and again in the spring plots were thinned to 40 plants per plot with approx. 10 cm spacing between plants

F_{1} plants - spring field trial

- Six F_{1} grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on $30^{\text {th }}$ June 2016

Resistance is dominant in
Watkins 733

Fx733 F $_{2}$ segregation - flag leaf phenotyping

Complete resistance : Fully Susceptible No sporulation : > 90\% YR

$$
\begin{aligned}
& 132 \mathrm{R}: 9 \mathrm{~S} \\
& 14.7 \mathrm{R}: 1 \mathrm{~S}
\end{aligned}
$$

Two unlinked dominant loci

But some intermediate phenotypes:

Neighbouring plants with lots of inoculum
Other minor effect loci affecting overall plant physiology

Should give 3 R: 1 S ratio in testcross

F_{1} plants - spring field trial

- Six F_{1} grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on $30^{\text {th }}$ June 2016

Food \& Rural Affairs

Fx203 F_{2} segregation - flag leaf assessments

24 R:37I: 19 S
1.2 R: 1.9 I: 1 S

Large number of intermediates

Semi-dominant resistance locus

Should give 1 I : 1 S ratio in testcross
bioscience for the future

F_{1} plants - spring field trial

- Six F_{1} grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on $30^{\text {th }}$ June 2016

Food \& Rural Affairs

Fx231 F_{2} segregation - flag leaf assessments

ROTHAMSTED RESEARCH

16R:29I:35S

1:2:2

Weakest parental resistance

Semi-dominant resistance in W231

Skewed towards fully susceptible phenotype

Suppressor locus from Fielder?

F_{1} plants - spring field trial

- Six F_{1} grain from each of the 4 crosses sown
- Two replicate plots of parent genotypes (40 seeds per plot)
- Yellow Rust assessments on $30^{\text {th }}$ June 2016

Food \& Rural Affairs

Fx610 F_{2} segregation - flag leaf assessments

30 R: 14 I : 32 S
2:1:2

Semi-dominant resistance locus
Lack of intermediate phenotypes
Interaction effect with other loci?
610 physiological later maturing variety

ROTHAMSTED RESEARCH

Fx786 F_{1} phenotype - flag leaf assessments

Resistance is dominant in Watkins 786

Next steps

Sow testcross trial in field (F_{1} backcrossed to Fielder)

backcross	harvested
203	145
231	169
610	171
733	175

Include F_{1} plants and parental genotypes to benchmark the phenotype of known hets confirm if we see variation in hets due to potential suppressor alleles

Sow F_{2} FxW786 populations

Fx786 F_{1} Plant	F_{2} harvested seed
1	579
2	610
3	605
4	251
5	No seed
6	335

Summary

- Five Watkins accessions with evidence of moderate-high resistance against YR across three field seasons (and 2008 field trial)
- Watkins 203 and 610 most promising for multi-disease resistance (although 610 later maturing)
- Genetics of inheritance different in each Watkins accession
(no single dominant locus 3R : 1S ratios)

2017-2018 field trials

Testcross trial
MDR031 (R) x MDR043 (S) take-all phenotyping trial
Watkins lines also included in Zymoseptoria field trial

Many thanks to

Kim Hammond-Kosack
Undergraduate summer students
Erin Baggs
Eleanor Leane
Tessa Reid
Laurie Neal
Alex Chambers-Ostler
Leanne Freeman
Jamie Hawkesford
Ellen Farnham
Gail Canning - seed preparation
Mike-Hammond-Kosack - crossing
Rodger White - statistics
RRes farm and glasshouse staff

WGIN Wheat Promotome Capture

A sub-contractor project of WGIN 3
Michael Hammond-Kosack (WGIN PA)

Update for WGIN MM on October $6^{\text {th }}$ @ RRes

What is Promotome Capture \& what are the Main Objectives for WGIN ?

What Is It?

Exome Promotome Capture

"Exome Promotome capture is a method used to extract and sequence the exome promotome (collection of all exons-promoters) in a genome and compare this variation across a sample of individual organisms (wheat cultivars). This allows studies to quickly focus in on the small percent of the genome that is most likely to contain variation that strongly affects phenotypes of interest and/or to identify rates of codon promoter evolution between a set of species to infer the effects of mutation and selection among genes." (http://hawaiireedlab.com/gwiki/index.php?title=Exome_Capture)

Main Objectives

$>$ Comparison of promoters of genes of interest in a large number of wheat cultivars used in breeding, farming \& scientific research
$>$ Identification of cis-acting elements important for gene regulation
$>$ Linking this comparison to phenotypic and transcriptomics data to increase our understanding of gene regulation to generate these phenotypes

Time Line

- FASTA with 1,402 promoter sequences submitted to MYcroarray May $10^{\text {th }}$
- MYbaits synthesis (@ Mycroarray) completed August 24 ${ }^{\text {th }}$
- 96 DNA samples $(80 \%$, up to $8 \mu \mathrm{~g})$ posted September $11^{\text {th }}$
- Samples received by MYcroarray September $12^{\text {th }}$
- MYbaits Capture: Library preps started September $14^{\text {th }}$
- Next Generation Sequencing @ MYcroarray: October
- Data will be received @ RRes from mid November 2017

8

- Bio-Informatics November 2017 - February 2050 (WGIN extension 18)

WGIN Funding \& Design - Traits, Trait-Coordinators \& Wheat Cultivars

$>$ Defra's WGIN 3 funding for this sub-contractor project allowed for the use of up to 40,000 MYbait probes and 96 "Reactions" (which equates to 96 Wheat Cultivars)
> MYbaits set-up: 1700bp promoter uses $\mathbf{2 8}$ MYbaits (120bp) with $\mathbf{2}$ fold coverage :

> 3 wheat homoeologues (A, B, D) $\mathbf{3 \times 2 8} \mathbf{~ M Y b a i t ~ p r o b e s ~ / ~ g e n e ~}$
> Thus Defra's funding will allow for the capture of $\mathbf{1 4 2 8}$ promoter sequences.
$>$ The WGIN Management Team decided on 10 Trait Categories,
and thus ≤ 143 promoter sequences per trait

1. Yield Resilience - Cristobal Uauy (JIC)
2. Grain Composition - Peter Shewry, Rowan Mitchell (RRes), Kay Trafford (NIAB)
3. Grain Development - Cristobal Uauy (JIC)
4. Biotic Stress (fungi and insects) - Matthew Moscou (TSL), Kim Hammond-Kosack (RRes)
5. Abiotic Stress (drought, high temp) - John Foulkes (UoN)
6. Nutrient Use Efficiency - Malcolm Hawkesford (RRes)
7. Canopy Development / Whole Plant Architecture - Clare Lister \& Simon Griffiths (JIC)
8. Flower biology - Zoe Wilson (UoN), Scott Bowden (JIC)
9. Root architecture - Malcolm Bennett (UoN), Peter Buchner (RRes)
10. Recombination - James Higgins (Leicester Uni)

The 96 Wheat Cultivars

Chosen by WGIN Management Team Members and Trait

Coordinators

ID	cultivar	nominators
1	A. speltoides 2140022	LS/GA
2	Abbot	SB
3	Aegilops peregrina (variabilis)	KT
4	Alcedo	RAGT
5	Ambrosia	SB
6	Avalon	SG/MH/VM/SB/CL/EO+JF
7	Badger	CL
8	Bobwhite	KK
9	Brompton	LG
10	Buster	SB
11	Cadenza	SG/MH/VM/SB/CL
12	Cellule	RAGT
13	Charger	SB
14	Chinese Spring	SG
15	Claire	RAGT/SG/PS/MH/CL
16	Coppadra	KK
17	Cordiale	PS/MH
18	Cougar	RAGT
19	Crusoe	RAGT/MH
20	Dickens	LG
21	Einstein	SB
22	ENT-228	LS/GA
23	Fielder	KK
24	Flanders	RAGT
25	Gallant	MH
26	Garcia	SG/CL
27	Gatsby	ECS
28	Gladiator	SB
29	Graham	LG/syn
30	Hereford	KHK/VM
31	Hereward	RAGT/PS/MH/SB/CL
32	Hobbit	SB

ID	cultivar	nominators
33	Hustler	SB
34	Isengrain	PS
35	Istabraq	PS/MH
36	JB Diego	RAGT
37	Kronos	WGIN MM team
38	KWS Santiago	RAGT
39	KWS Silverstone	LG
40	KWS Siskin	RAGT
41	KWS Trinity	LG
42	Malacca	PS/MH/CL
43	Maris Huntsman	SB
44	Maris Widgeon	MH
45	Marksman	PS
46	Mercia	MH
47	Napier	CL
48	Oakley	RAGT
49	Paragon	SG/MH/AR/VM
50	Piko	RAGT
51	Reflection	LG
52	Relay	RAGT
53	Revelation	LG
54	Rialto	RAGT/SB/PS
55	Riband	MH/KK
56	Robigus	RAGT/SG/MH/AR
57	Savannah	CL
58	Scout	RAGT
59	Sear Synthetic	SG
60	Skyfall	RAGT
61	Soisson	RAGT/PS/MH
62	Solstice	RAGT/GA_LS/MH
63	Spark	PS/CL
64	Stigg	MH

ID	cultivar	nominators
65	Sumai 3	RAGT
66	T. monoccocum MDR031	KHK/VM
67	T. monoccocum MDR037	LS/GA/VM
68	T. monoccocum MDR043	KHK/VM
69	T. monoccocum MDR045	LS/GA
70	T. monoccocum MDR046	RRES/VM
71	T. monoccocum MDR049	LS/GA
72	T. monoccocum MDR308	KHK
73	T. monoccocum MDR657	LS/GA
74	Taichung 29	KK/JRudd
75	Ukrainka	PS
76	USU-Apogee	KK
77	Valoris	PS
78	Veranopolis	KK
79	Watkins 115	LS/GA
80	Watkins 141	SG
81	Watkins 160	SG
82	Watkins 199	LS/GA/SG
83	Watkins 203	VM
84	Watkins 239	SG
85	Watkins 209	
86	Watkins 246	SG
87	Watkins 292	SG
88	Watkins 387	SG
89	Watkins 579	LS/GA
90	Watkins 624	LS/GA
91	Watkins 733	VM
92	Watkins 777	VM/SG
93	Watkins 786	VM
94	Xi19	RAGT/PS/MH
95	Yumai 34	PS
96	Zebedee	EO+JF

A total of $\mathbf{1 3 5 5}$ Gene IDs distributed as:

Workflow

- Retrieve coding sequences (CDS) from Ensembl Biomart (http://plants.ensembl.org/biomart)
- BLAST CDS against IWGSC RefSeq v1.0 (https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies):
- Obtain coordinates on chromosome with 100\% ID
- Use coordinates on relevant RefSeq v1.0 chromosome in Geneious to obtain 1700bp upstream of ATG
- Generate FASTA file with all promoter/5’UTR seqs

Too Many Promoters!

MYbaits 2 set (max. 40,000 baits):

- 88 genes have (up to 4) alternate ATGs
- Inclusion of 1700bp upstream for all of these exceeded the max MYbaits number
- Including promoters for ALL genes and ALL alternate start sites needed a reduction of 1100 MYbaits: achieved by combining overlapping promoters
a) overlap: combined promoter with shared MYbaits (\ll 56 MYbaits/promoter)

b) NO overlap: 2 separate promoters with individual MYbaits (56 MYbaits/promoter)

Promoters combined: 4

Promoters for 60 genes combined saving 1,157 MyBaits

28 Promoters not (fully*) combined

* For these 3 genes, 2 out of 3 alternate Promoters were combined

Promoters/UTRs with Undeterminate Nucleotide Stretches (Ns)

a) N stretches within $1700 \mathrm{bp}: 136$

1. $1 \mathrm{~A}-0024490-\mathrm{T}-11 \mathrm{r}-350 \mathrm{~N}$
2. 1A-0026030-T1-16-237N
3. $1 \mathrm{~A}-0026620-\mathrm{T} 6-29 \mathrm{r}-474 \mathrm{~N}$
4. 1A-0031460-T4-49r-10N
5. 1A-0036950-T10-23-483N
6. 1A-0037970-T7-20-312N
7. 1A-0047200-T3-2Or - 282N
8. 1A-0069860-T4-51r-414N
9. 1A-0075220-T2-50-431N
10. 1B-0088580-T1-6r-209N
11. 1B-0108420-T2-52-388N
12. 1B-0108930-T6-29r-433N
13. 1B-0122280-T4-40r-327N
14. 1B-0123110-T8-22r-160N
15. 1B-0148870-T4-49r-332N
16. 1B-0150920-T6-48r-437N
17. 1D-0192320-T8-22r-246N
18. 1D-0193790-T6-29-1r-268N
19. 1D-0221450-T7-42r-276N
20. 1D-0221450-T7-42r-217N
21. 1D-0258100-T1-25-512N
22. 1D-0264750-T6-48-399N
b) N stretches reducing 1700bp: 36
23. 1A-0037970-T7-20 2. 1A-0080120-T5-30r 3. 1B-0103850-T7-3r 4. 1B-0156080-T5-12 5. 2A-0343000-T2-31r
24. 2B-0425980-T2-56r
25. 3A-0686640-T7-2
26. 3B-0725290-T7-21r
27. 3D-0898770-T7-21r
28. 3D-0913830-T9-37
29. 3D-0926370-T5-26
30. 3D-0928740-T7-24
31. 3D-0935160-T2-28r
32. 4A-1016270-T9-1
33. 4A-1023210-T8-5r
34. $041080-\mathrm{T} 4-24$
35. 4B-1052320-T5-10r
36. 4B-1109570-T2-73
37. 5A-1186440-T4-36
38. 5A-1192740-T1-3
39. 5A-1216860-T1-23r
40. 5A-1252880-T9-29r
41. 5B-1310950-T6-24
42. 5B-1313490-T1-23
43. 5B-1323430-T1-3r
44. 5D-1434480-T5-16B
45. 5D-1448500-19-8
46. 6A-1566480-T8-7
47. 6B-1587290-19-18
48. 7A-1759120-T6-33
49. 7A-1759120-T6-33
50. 7B-2140600B-T4-32r
51. 7D-1974260-T6-3r
52. 7D-2008610-T9-15

Distribution of WGIN Trait Genes in Wheat Genome is NOT even

6D U 1D 4D 1A 3D 6A 7D 2D 4B 1B 5D 5A 5B 6B 7A 4A 7B 3A 2A 2B 3B

MYbaits filtration to find baits (primers) specific for each homoeologue

MYbaits Coverage

How many baits are specific for each individual promoter sequence?

trait\&gene no.	gene	WGIN Promotome ID	MYbaits	MYbaits coverage (\%)	homoeologue ID (\%)
T4-1	TaCERK1	7A-1826280-T4-1	18	74.4	29.8
T4-1	TaCERK1	7B-1934340-T4-1	11	51.3	
T4-1	TaCERK1	7D-2045100-T4-1	9	39.8	
T4-10	TaMPK3	4A-1008960-T4-10r	7	41.6	57.5 but 84.7 to [-800]
T4-10	TaMPK3	4B-1033300-T4-10	14	65.2	
T4-10	TaMPK3	4D-1148960-T4-10r	12	58.4	
T4-11	TaMPK6	7A-1834630-T4-11r	4	21.6	45.5 but 69.9 to [-800]
T4-11	TaMPK6	7B-1954300-T4-11r	5	25.4	
T4-11	TaMPK6	7D-2040040-T4-11r	6	32.5	
T4-12	TaOCP3	7A-1770880-T4-12	13	52.2	24.3
T4-12	TaOCP3	7B-1867300-T4-12r	18	77.6	
T4-12	TaOCP3	7D-2004100-T4-12r	22	91.5	
T4-13	TaOPR3	7A-1801960-T4-13	8	43.3	49.1
T4-13	TaOPR3	7B-1860490-T4-13	7	29.6	T4-13 = T5-14???
T4-13	TaOPR3	7D-2008410-T4-13	6	25.9	
T4-14	TaNH1	3A-0688550-T4-14	14	65.9	42
T4-14	TaNH1	3B-0744050-T4-14	10	43.1	
T4-14	TaNH1	3D-0914040-T4-14	12	58.4	
T4-15	TaBI-1	1D-0240360-T4-15	7	28.5	25.1
T4-15	TaBI-1	6A-1573990-T4-15	15	76.2	
T4-15	TaBl-1	6B-1671980-T4-15r	17	82.6	
T4-16	TaLSD1	7A-1798270-T4-16	6	36	46.5 but 86.9 to [-580] and 100\% (1080-1176]
T4-16	TaLSD1	7B-1864900-T4-16	15	72.9	
T4-16	TaLSD1	7D-1974840-T4-16	14	71.1	

Mybaits Filtration

(performed by Dr. Jacob Enk @ MYcroarray)

- WGIN_Promotome_FASTA - 1,402 unique entry IDs, 1373* unique sequences:
- RepeatMasked this using the cross-match algorithm and employing the Triticum repeat library available at RepeatMasker.org
- used default bait length and tiling configuration (120nt baits, tiled each 60nt, or " 2 X " bait coverage)
- Generates 36,352 baits sequences, >35K unique.
- Filtration of baits for specificitythe by eliminating baits that
(1) map to multiple locations in TGAC genome build with strong expected hybridization and/or (2) were $\mathbf{2 5 \%}$ or more RepeatMasked.

4 - A final 18,112 baits survived this filtration (17,745 unique*)

* differences: same gene ID provided for multiple traits -> seqs removed from all but one trait

Duplicate Gene IDs

1) $\mathrm{T} 1-3=\mathrm{T} 6-41$
2) $\mathrm{T} 1-5=\mathrm{T} 8-17$
3) $\mathrm{T} 2-2=\mathrm{T} 3-13$
4) $\mathrm{T} 2-3=\mathrm{T} 3-12$
5) $\mathrm{T} 2-5=\mathrm{T} 3-17$
6) $\mathrm{T} 2-13=\mathrm{T} 3-25$
7) $T 2-27=T 3-27$
8) $T 2-29=T 3-26$
9) $\mathrm{T} 2-35=\mathrm{T} 3-23$
10) $\mathrm{T} 2-37=\mathrm{T} 3-16$
11) $T 2-39=T 3-24$
12) $T 2-43=T 3-30$
13) $\mathrm{T} 2-45=\mathrm{T} 3-31$
14) $T 2-47=T 3-32$
15) $\mathrm{T} 2-49=\mathrm{T} 3-33$
16) $\mathrm{T} 2-50=\mathrm{T} 3-34$
17) $\mathrm{T} 2-51=\mathrm{T}-35$
18) $\mathrm{T} 2-52=\mathrm{T} 3-36=\mathrm{T} 9-67$
19) $\mathrm{T} 2-53=\mathrm{T} 3-28$
20) $\mathrm{T} 2-54=\mathrm{T} 3-29$
21) $T 2-56=T 3-39$
22) $\mathrm{T} 2-57=\mathrm{T} 3-40$
23) $\mathrm{T} 2-58=\mathrm{T} 3-42$
24) $T 2-59=T 3-43$
25) $\mathrm{T} 2-60=\mathrm{T} 3-44$
26) $\mathrm{T} 2-61=\mathrm{T} 3-22$
27) $\mathrm{T} 6-1=\mathrm{T}-63$
28) $\mathrm{T} 6-3=\mathrm{T} 9-64$
29) T6-5 $=$ T9-58
30) $\mathrm{T} 6-29=\mathrm{T} 8-15$
31) $\mathrm{T} 6-30=\mathrm{T} 8-16$
32) $\mathrm{T} 7-33=\mathrm{T} 9-23$
33)T7-36 = Ppd-A1 (control)
33) $\mathrm{T} 7-53=\mathrm{T} 8-27$

MYbaits filtration for 1A-0075270A-T4-17

only 6 Baits pass stringent criteria

Bait	\%GC	\%RM	BLAST-Hits	40-60C	60-62.5C	62.5-65C	65-67.5C	67.5-70C	>70C	Stringent	Moderate	Relaxed	Sequen
1A-0075270A-T4-17_0	35	0	32	17	0	6	0	0	0	pass	pass	pass	tectatatioc
1A-0075270A-T4-17_64	34.2	0	25	13	1	7	1	0	0	fail	pass	pass	asatattica
1A-0075270A-T4-17_128	35.8	0	40	31	1	6	0	0	0	fail	fail	fail	сстстатстс,
1A-0075270A-T4-17_192	34.2	0	39	25	1	8	0	0	0	pass	pass	pass	тастGtattr
1A-0075270A-T4-17_256	29.2	0	21	9	5	4	0	0	0	pass	pass	pass	attctagtat
1A-0075270A-T4-17_320	29.2	0	22	8	9	3	0	0	0	pass	pass	pass	atgaggataa
1A-0075270A-T4-17_384	40.8	0	33	15	2	1	6	3	0	fail	fail	fail	cattaticcta
1A-0075270A-T4-17_448	39.2	0	15	3	1	4	6	0	0	fail	fail	fail	AAAAGTGCT/
1A-0075270A-T4-17_512	39.2	0	23	7	0	2	6	4	0	fail	fail	fail	ттсаGatct
1A-0075270A-T4-17_576	45.8	0	17	2	0	0	1	10	1	fail	fail	fail	саAAACCTTT
1A-0075270A-T4-17_640	41.7	0	14	0	2	3	8	0	0	fail	fail	fail	тстастсасат
1A-0075270A-T4-17_704	35	0	15	1	8	5	0	0	0	pass	pass	pass	tactigcaat
1A-0075270A-T4-17_768	35	0	22	3	2	6	6	0	0	fail	fail	fail	
1A-0075270A-T4-17_832	34.2	0	43	18	4	9	0	0	0	pass	pass	pass	gataccagtm
1A-0075270A-T4-17_896	40.8	0	16	1	0	1	6	7	0	fail	fail	fail	a aatatggag
1A-0075270A-T4-17_960	42.5	0	18	3	0	2	8	4	0	fail	fail	fail	GGAGAGGGCl
1A-0075270A-T4-17_1024	37.5	0	21	6	1	5	8	0	0	fail	fail	fail	Atacagtica
1A-0075270A-T4-17_1088	36.7	0	29	4	1	6	10	0	0	fail	fail	fail	atgataagc
1A-0075270A-T4-17_1152	40.8	0	23	5	0	5	8	4	0	fail	fail	fail	AGctectica
1A-0075270A-T4-17_1216	41.7	0	25	8	4	9	3	0	0	fail	fail	pass	GAGGTGGTA
1A-0075270A-T4-17_1280	39.2	0	25	6	3	14	1	0	0	fail	fail	fail	AGGtggctaa
1A-0075270A-T4-17_1344	36.7	0	24	4	4	9	6	0	0	fail	fail	fail	teaattcta
1A-0075270A-T4-17_1408	35.8	0	27	5	7	13	0	0	0	fail	fail	fail	attitcattsc
1A-0075270A-T4-17_1472	36.7	0	29	8	6	13	1	0	0	fail	fail	fail	tctatciagc
1A-0075270A-T4-17_1536	39.2	0	21	1	7	12	0	0	0	fail	fail	fail	AAAGTGATCI
1A-0075270A-T4-17_1580	47.5	0	3	0	0	0	1	1	0	fail	fail	fail	CAAGGGCACT

T4-17 (TaEDR1) A homoeologue - 38.5\% Mybaits coverage

WGIN Promotome MYbaits coverage

Comparison of Homoeologous Promoter Sequences

trait\&gene no.	gene	WGIN Promotome ID	MYbaits	MYbaits coverage (\%)	homoeologue ID (\%)
T4-1	TaCERK1	7A-1826280-T4-1	18	74.4	29.8
T4-1	TaCERK1	7B-1934340-T4-1	11	51.3	
T4-1	TaCERK1	7D-2045100-T4-1	9	39.8	
T4-10	TaMPK3	4A-1008960-T4-10r	7	41.6	57.5 but 84.7 to [-800]
T4-10	TaMPK3	4B-1033300-T4-10	14	65.2	
T4-10	TaMPK3	4D-1148960-T4-10r	12	58.4	
T4-11	TaMPK6	7A-1834630-T4-11r	4	21.6	45.5 but 69.9 to [-800]
T4-11	TaMPK6	7B-1954300-T4-11r	5	25.4	
T4-11	TaMPK6	7D-2040040-T4-11r	6	32.5	
T4-12	TaOCP3	7A-1770880-T4-12	13	52.2	24.3
T4-12	TaOCP3	7B-1867300-T4-12r	18	77.6	
T4-12	TaOCP3	7D-2004100-T4-12r	22	91.5	
T4-13	TaOPR3	7A-1801960-T4-13	8	43.3	49.1
T4-13	TaOPR3	7B-1860490-T4-13	7	29.6	T4-13 = T5-14???
T4-13	TaOPR3	7D-2008410-T4-13	6	25.9	
T4-14	TaNH1	3A-0688550-T4-14	14	65.9	42
T4-14	TaNH1	3B-0744050-T4-14	10	43.1	
T4-14	TaNH1	3D-0914040-T4-14	12	58.4	
T4-15	TaBI-1	1D-0240360-T4-15	7	28.5	25.1
T4-15	TaBI-1	6A-1573990-T4-15	15	76.2	
T4-15	TaBI-1	6B-1671980-T4-15r	17	82.6	
T4-16	TaLSD1	7A-1798270-T4-16	6	36	46.5 but 86.9 to [-580] and 100\% (1080-1176]
T4-16	TaLSD1	7B-1864900-T4-16	15	72.9	
T4-16	TaLSD1	7D-1974840-T4-16	14	71.1	

WGIN Promotome - Homoeologous Promoter Similarities

T9-11 (Bonzai 3 - copine family)

T9-11 ctd.

Both alternate promoters have strikingly similar insertions in A homoeologue with
$>$ Similar position from ATG
$>$ Very similar lengths (83 \& 85bp) \& 61\% homology
$>$ Very similar 2° structure (Palindromic)

1A-\#-T9-11-1r insert has 99\% identity to Taes Athos

(DNA-transposon, TIR, Mariner; Stowaway MITE, complete element)

Consensus
Identity
[\% FWD 1. 1A-0017770-T9-11-1r insert
[FWD 2. DTTTaes_Athos_42j2-5 [FIWD 3. DTT-Hvul_Athos_M801L24-1 [FWD 4. DTTHvul_Athos_BJ447578-1 [FWID 5. DTT_Hvul_Athos_BI455329-1 [FWID 6. DTT.Hvul_Athos_AJ475374-1
CH FUDD 7. DTT-Taes_Athos_BI282680-1
[* FIID 9. DTT-Taes_Athos_BJ270008-1
[FWD 10. DTT_Taes_Athos BJ242729-1
 TACTCCCTCCGTAAACTAATATAAGAGTGTITAGATCACTATITTAGTGATCDAAACGCTCTTATATTAGTTTACAGAGGGAGTA $!$
TACTCCCTCCGTAAACTAATATAAGAGTC. TAGATCACTATIITAGTAATCTAAACGCTCTTATATTAGTTTACAGAGGGAGTA TACTCCCTCTGTAAACTAATATAAGAGCATITAGATCACTACTATAGTAATCTAAACGCTCTTATATTAGTTTACAGAGGGAGTA CTCCCTCIGTAAACAACTATAAGAGTGTITAGATCACTATIITAGTGATCTAAACGCTCTTATGIITCTIITTGGAGGAAG CTTCCTCC--AAAGAAACATAAGAGCGTITAGATCACTAAAATAGTGATCTAAACACTCTTATAGITGGTTTACAGAGGGAG CTCCCTCCGTAAACTAATATAAGAGTGTITAGATAACTACITTAGTGATCTAAACGCTCTTATATTAGCTTACAGAGGGAG $\subset T C \subset \subset T C C G T A A A C T A A T A T A A G A G C A T I T A G A T C A C T A T I T T A G T T A T C T A A A C G C T C T T A T A T T A G T I T A C A G A G G G A G$ CTCCCTCCGTAAACTAATATAAGAGTGTITAGATGACTATIITAGTGATCTAAACGCTCTTATATTAGTTTACTGAGGGAG CTCCCTCCGTGAACTAATATAAGAGTGTITAGATTIACTATIITAGTGATCTAAACGCTCTTATATTAGTITACAGAGGGAG

TREP, the TRansposable Elements Platform (http://botserv2.uzh.ch/kelldata/trep-db/blast/blastTREP.html)
There are 6,330 occurances of this MITE in the Wheat genome (IWGSC), but only 1 exact copy with 85/85 identity ($=1 \mathrm{~A}-0017770-\mathrm{T9}-11-1 \mathrm{r}$ location)

1A-\#-T9-11-2r insert has up to 98% identity to Taes Hades

(DNA-transposon, TIR, Mariner; Stowaway MITE, complete element)

There are 4,969 occurances of this MITE in the Wheat genome (IWGSC) with 3 exact copies on Chr 1A (= 1A-0017770-T9-11-1r location), 2A \& 2B

T9-11-1 Homoeologues Expression Patterns

Expression graph modified from Wheat Expression Browser (Cristobal Uauy (JIC) http://www.wheat-expression.com)

1A-0017770-T9-11-1r \& -2r inserts

b) NCBI BLAST against ALL species (Plants, Fungi, Animalia etc):

 ONLY hits in Pooideae \rightarrow highly grass-specific MITEs| Genus | Pooideae | (largest subfamily of the grass family Poaceae) |
| :---: | :---: | :---: |
| Triticum aestivum | Triticinae | Familia: Poaceae |
| Aegilops tauschii subsp. tauschii | | Subfamilia: Pooideae |
| Aegilops sharonensis | | Tribus: Hordeeae |
| Aegilops Iongissima | | Subtribus: Triticinae |
| Triticum monococcum subsp. monococcum cultiv | | Genera: Aegilops - Dasypyrum - Thinopyrum - Triticum |
| Triticum urartu | | |
| Aegilops bicornis | | |
| Triticum dicoccoides | | |
| Triticum turgidum subsp. dicoccon | | |
| Triticum timopheevii subsp. armeniacum | | |
| Aegilops speltoides Pina | | |
| Secale cereale | Hordeinae | Familia: Poaceae |
| Agropyron cristatum | | Subfamilia: Pooideae |
| Agropyron mongolicum | | Tribus: Hordeeae |
| Hordeum vulgare | | Subtribus: Hordeinae |
| Kengyilia melanthera | | Genera: Agropyron - Anthosachne - Australopyrum - Connorochloa |
| Kengyilia grandiglumis | | - Crithopsis - Elymus - Eremopyrum - Festucopsis |
| Kengyilia mutica | | - Henrardia - Heteranthelium - Hordelymus - Hordeum |
| Kengyilia longiglumis | | - Hystrix - Kengyilia - Leymus - Pascopyrum |
| | | - Peridictyon - Psathyrostachys - Pseudoroegneria - Secale |
| | | -Stenostachys - Taeniatherum |

T4-54r (AK360626 - RING-H2 finger protein)

B homoeologue insertion with stable secondary structure (palindrome)

$>$ Very stable $\mathbf{2}^{\circ}$ structure
$>$ Possible MITE ?
> 1,020 hits in Wheat Genome
$>$ NO match in TREP database \&
IWGSC_refseqv1.0_TransposableElements_2017Mar13
\longrightarrow New MITE?

Chr 7B Map of 7B-1921350-T4-54r region With Surrounding Repeat Regions/Fragments

T4-54r homoeologue Expression Patterns

$>$ Generally Higher Expression levels on 7B which contains the MITE
$>$ 7B allele specifically up-regulated by Yellow Rust \& Mildew (>48h)

T9-40 (SGN3/GSO 1)

Precise number of Ns in IWGSC RefSeq v1.0 may be too large?

5' UTRs (UnTranslated Regions)

$>$ The 5^{\prime} untranslated region (5^{\prime} UTR) (also known as a leader sequence or leader RNA) is the region of an mRNA that is directly upstream from the initiation codon. This region is important for the regulation of translation of a transcript by differing mechanisms in viruses, prokaryotes and eukaryotes.
$>$ Most promoter elements are not a part of the mRNA sequence. They are upstream (towards 5') of the transcription start site. However, a certain class of promoters called downstream promoter elements (DPE) can overlap with the genetic region. These elements have been reported to lie at 29-33bp upstream of the transcription start site and are widely employed in Drosophila. Mapping of DPEs has been done for mouse and human genes as well.
> There is also evidence for small uORFs (upstream Open Reading Frames) inside the 5'UTRs that express peptides downregulating plant defense genes (Guoyong Xu et al Nature 2017).

Generalised structure of mRNA

5'UTR length for Trait 4 (Biotic Stress) Genes

T4 Promoters Grouped by 5'UTR Length

$>78 \%$ of promoters will have at least 1000bp of promoter
> Only 7\% would have no promoter sequence

5'UTR Comparison

Should We Change The Project Name - Again?

WGIN Exome Capture

WGIN Promotome
 Capture

WGIN PromoUTRome?
Capture

Key Outcomes So Far - Prior to MYbaits Capture

50 genes were reassigned to different chromosomes (TGAC \rightarrow IWGSC), in 32 cases completing the ABD Homoeologue sets

Very specific primers identified for each homoeologue
71\% of promoters with >50\% MYbaits coverage
\rightarrow full 1700bp sequences expected for ALL of these
New MITE identified (let's call it Taes WGIN) - by aligning the homoeologous promoter/5'UTR sequences
Good evidence for differential homoeologous expression in Chinese Spring - vindicating the WGIN approach of capturing individual homoeologues

Chromosomes with highest densities for ALL Traits are 7D, 7A \& 1D (243/1390)

Department

 for EnvironmentFood \& Rural Affairs
$>$ The WGIN3 Management Team: Andrew Riche (RRes), Clare Lister (JIC), David Feuerhelm (Syngenta), Dhan Bhandari (AHDB), Edward Flatman (Limagrain), Gia Aradottir (RRes), Jacob Lage (KWS), Kim Hammond-Kosack (RRes), Kostya Kanyuka (RRes), Lesley Smart (RRes), Malcolm Hawkesford (RRes), Martin Cannell (Defra), Matthew Kerton (dsv-uk), Peter Shewry (RRes), Richard Jennaway (saatenunion), Ruth Bryant (RAGT), Sarah Holdgate (NIAB), Simon Berry (Limagrain), Simon Griffiths (JIC), Simon Penson (Campden BRI), Stephen Smith (Elsoms), Vanessa McMillan (RRes)

Alison Devault, Jacob (Jake) Enk
$>$ Trait Co-ordinators \& colleagues: Kay Trafford (NIAB), Rowan Mitchell (RRes), Matthew Moscou (JIC), John Foulkes (Nottingham University), Peter Buchner (RRes), Nick Evens (RRes), James Connerton (JIC), Sigrid Heuer (RRes), Jose Fernandez (Nottingham University), Zoe Wilson (Nottingham University), Malcolm Bennett (Nottingham University), Laura Dixon (JIC), Scott Boden (JIC), James Higgins (Leicester University), Cristobal Uauy (JIC), Peter Jack (RAGT)

Mike Ambrose (GRU @ JIC), Simon Orford (JIC), Jacob Lage (KWS), Lesley Smart (RRes), Clare Lister (JIC), Nick Balaam (Senova Ltd), Kay Trafford (NIAB), Simon Berry (Limagrain)
> Glasshouse etc:
$>$ Laboratory:

Bioinformatics:

Acknowledgements

Defra

Provision of cultivars:

Jill Maple (RRes), Jack Turner (RRes), Tom Yaxley (RRes)

Carlos Bayon (RRes), Martin Urban (RRes)

Rob King (RRes), Keywan Hassani-Pak (RRes)

Wheat

